【題目】化簡:2(a43+(﹣2a32(﹣a23+a2a10

【答案】解:原式=2a12+4a6(﹣a6)+a12=3a12﹣4a12
=﹣a12
【解析】先算乘方,再算乘法,最后合并同類項(xiàng)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點(diǎn)D的仰角為45°,底部點(diǎn)C的俯角為30°,求樓房CD的高度(=1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解a(b﹣c)﹣3(c﹣b)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點(diǎn),連接AC,作CDAC,且AC=2CD,過CCEBNAD于點(diǎn)E,設(shè)BC長為a

(1)求△ACD的面積(用含a的代數(shù)式表示);

(2)求點(diǎn)D到射線BN的距離(用含有a的代數(shù)式表示);

(3)是否存在點(diǎn)C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x+12+x1-x=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量人員的眼睛A與標(biāo)桿頂端F、電視塔頂端E在同一條直線上,已知此人的眼睛到地面的距離AB=1.6m,標(biāo)桿FC=2.2m,且BC=1m,CD=5m,標(biāo)桿FC、ED垂直于地面.求電視塔的高ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是邊BC上的動點(diǎn),點(diǎn)Q是對角線AC上的動點(diǎn)(包括端點(diǎn)A,C),則EP+PQ的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)B(1, 0)、C(3, 0)、D(3, 4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動點(diǎn)P從點(diǎn)A出發(fā),以每秒個單位的速度沿線段AD向點(diǎn)D運(yùn)動,運(yùn)動時間為t秒.過點(diǎn)P作PE⊥x軸交拋物線于點(diǎn)M,交AC于點(diǎn)N.

(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;

(2)當(dāng)t為何值時,△ACM的面積最大?最大值為多少?

(3)點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個單位的速度沿線段CD向點(diǎn)D運(yùn)動,當(dāng)t為何值時,在線段PE上存在點(diǎn)H,使以C、Q、N、H為頂點(diǎn)的四邊形為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強(qiáng)在河的一邊,要測河面的一只船B與對岸碼頭A的距離,他的做法如下:

①在岸邊確定一點(diǎn)C,使C與A,B在同一直線上;
②在AC的垂直方向畫線段CD,取其中點(diǎn)O;
③畫DF⊥CD使F、O、A在同一直線上;
④在線段DF上找一點(diǎn)E,使E與O、B共線.
他說測出線段EF的長就是船B與碼頭A的距離.他這樣做有道理嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案