【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫總蓄水量.

(2)求當(dāng)0≤x≤60時(shí),水庫的總蓄水量y(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.

【答案】(1)y1=20x+1200,x=20時(shí),y1=800;(2)當(dāng)0x20時(shí),y=20x+1200,當(dāng)20<x60時(shí),y=5x+700.

15x40.

【解析】

試題分析:(1) 根據(jù)(0,1200),(60,0)兩點(diǎn)求出y1與x的關(guān)系式,把x=20代入可求出水庫總蓄水量;(2)分兩種情況:當(dāng)0x20時(shí),y=y1,當(dāng)20<x60時(shí),y=y1+y2;并計(jì)算分段函數(shù)中y900時(shí)對應(yīng)的x的取值.

試題解析:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入到y(tǒng)1=kx+b得:, 解得,

y1=20x+1200,當(dāng)x=20時(shí),y1=20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入到y(tǒng)2=kx+b中得:, 解得,y2=25x500,當(dāng)0x20時(shí),y=20x+1200,

當(dāng)20<x60時(shí),y=y1+y2=20x+1200+25x500=5x+700,y900,則5x+700900,x40,

當(dāng)y1=900時(shí),900=20x+1200,x=15,發(fā)生嚴(yán)重干旱時(shí)x的范圍為:15x40.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是隨機(jī)事件的是(
A.火車開到月球上
B.拋出的石子會(huì)下落
C.明天臨海會(huì)下雨
D.早晨的太陽從東方升起

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中AD是A的外角平分線,P是AD上一動(dòng)點(diǎn)且不與點(diǎn)A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關(guān)系是(

Aa>b Ba=b Ca<b D不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點(diǎn)DF分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:15°37′+42°51′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x213x1)的根為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五月初,我市多地遭遇了持續(xù)強(qiáng)降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計(jì)劃購買甲、乙兩種救災(zāi)物品共2000件送往災(zāi)區(qū),已知每件甲種物品的價(jià)格比每件乙種物品的價(jià)格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同

(1)求甲、乙兩種救災(zāi)物品每件的價(jià)格各是多少元?

(2)經(jīng)調(diào)查,災(zāi)區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點(diǎn)C落在處,AD于點(diǎn)E

(1)試判斷△BDE的形狀,并說明理由;

(2)若AB=6,,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若△ABC中,∠A∶∠B∶∠C=1∶2∶3,則△ABC一定是( )

A. 銳角三角形 B. 鈍角三角形 C. 直角三角形 D. 等腰三角形

查看答案和解析>>

同步練習(xí)冊答案