【題目】如圖,在RtABC中,ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉90°后得CE,連接EF

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

【答案】詳見解析.

【解析】試題分析:(1)、根據(jù)旋轉圖形的性質可得:CD=CE,∠DCE=90°,根據(jù)∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,結合已知條件得出三角形全等;(2)、根據(jù)全等得出∠BDC=∠E,∠BCD=∠FCE,從而得出∠DCE=90°,然后根據(jù)EF∥CD得出∠BDC=90°

試題解析:(1)、將線段CD繞點C按順時針方向旋轉90°后得CE,

∴CD=CE,∠DCE=90°,

∵∠ACB=90°,

∴∠BCD=90°-∠ACD=∠FCE,

△BCD△FCE, CBCF

∵BCD∠FCE,CDCE,CB=CF∠BCD=∠FCE

∴△BCD≌△FCESAS).

2)、由(1)可知△BCD≌△FCE,

∴∠BDC=∠E,∠BCD=∠FCE,

∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,

∵EF∥CD,

∴∠E=180°-∠DCE=90°,

∴∠BDC=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式2x2+3y+7的值為8,那么代數(shù)式6x2+9y+8的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=3x2+3的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=64°,BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(EBC上,FAC)折疊,點C與點O恰好重合,則∠OEC_________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式x2﹣3kxy﹣3y2+6xy﹣8不含xy項,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數(shù))?

(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時間x(天)的函數(shù)關系式,并求當x=20時的水庫總蓄水量.

(2)求當0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數(shù)關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校安排學生住宿,若每間房住8人,則12人無法入;若每間房住9人,則空余2間房.這個學校的住宿生共有( 。

A. 108 B. 180 C. 196 D. 252

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校對七年級男生進行俯臥撐測試,以能做8個為達標,超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負數(shù)表示,其中10名男生的成績?nèi)缦卤恚?/span>

1

3

-1

0

-3

4

6

0

-2

-1

(1)這10名男生中有幾個達標?達標率是百分之幾?

(2)這10名男生共做了多少個俯臥撐?

查看答案和解析>>

同步練習冊答案