對于二次三項式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a2這項,使整個式子的值不變.于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2=(x+3a)(x-a)
像上面這樣把二次三項式分解因式的方法叫做添(拆)項法.
(1)請用上述方法把x2-4x+3分解因式.
(2)多項式x2+2x+2有最小值嗎?如果有,那么當它有最小值時x的值是多少?

解:(1)x2-4x+3
=x2-2×2x+22-22+3
=(x-2)2-12
=(x-1)(x-3);

(2)x2+2x+2
=x2+2x+12-12+2
=(x+1)2+1,
故當它有最小值時x的值是-1.
分析:(1)要運用配方法,只要二次項系數(shù)為1,只需加上一次項系數(shù)一半的平方即可配成完全平方公式;
(2)把多項式x2+2x+2湊成完全平方式加常數(shù)項的形式,即可求出多項式x2+2x+2有最小值時x的值.
點評:此題主要考查了因式分解的應(yīng)用,完全平方式的非負性,即完全平方式的值是大于等于0的,它的最小值為0.所以在求一個多項式的最小值時常常用湊完全平方式的方法進行求值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、對于二次三項式x2-10x+36,小聰同學作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于11.你是否同意他的說法?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

24、閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax-3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添-適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實數(shù),試比較x2-4x+5與-x2+4x-4的大小,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)對于二次三項式x2+10x+46,小明作出如下結(jié)論:無論x取任何實數(shù),它的值都不可能小于21.你同意他的說法嗎?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)若x=2,則x2-10x+36的值是多少?
(2)對于二次三項式x2-10x+36,小明同學作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于8.你是否同意他的說法?說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于二次三項式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a2這項,使整個式子的值不變.于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2=(x+3a)(x-a)
像上面這樣把二次三項式分解因式的方法叫做添(拆)項法.
(1)請用上述方法把x2-4x+3分解因式.
(2)多項式x2+2x+2有最小值嗎?如果有,那么當它有最小值時x的值是多少?

查看答案和解析>>

同步練習冊答案