【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在AD、CD上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____.
【答案】5
【解析】
根據(jù)正方形的四條邊都相等可得AB=AD,每一個(gè)角都是直角可得∠BAE=∠D=90°;然后利用“邊角邊”證明△ABE≌△DAF得∠ABE=∠DAF,進(jìn)一步得∠AGE=∠BGF=90°,從而知GH=BF,利用勾股定理求出BF的長(zhǎng)即可得出答案.
∵四邊形ABCD為正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵點(diǎn)H為BF的中點(diǎn),
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)隨著全國(guó)樓市的降溫,商品房的價(jià)格開(kāi)始呈現(xiàn)下降趨勢(shì),2012年某樓盤(pán)平均售價(jià)為5000元/平方米,2014年該樓盤(pán)平均售價(jià)為4050元/平方米.
(1)如果該樓盤(pán)2013年和2014年樓價(jià)平均下降率相同,求該樓價(jià)的平均下降率;
(2)按照(1)中樓價(jià)的下降速度,請(qǐng)你預(yù)測(cè)該樓盤(pán)2015年樓價(jià)平均是多少元/平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第1次用600元購(gòu)進(jìn)2B鉛筆若干支,第2次用800元又購(gòu)進(jìn)該款鉛筆,但這次每支的進(jìn)價(jià)是第1次進(jìn)價(jià)的八折,且購(gòu)進(jìn)數(shù)量比第1次多了100支.
(1)求第1次每支2B鉛筆的進(jìn)價(jià);
(2)若要求這兩次購(gòu)進(jìn)的2B鉛筆按同一價(jià)格全部銷(xiāo)售完畢后獲利不低于600元,問(wèn)每支2B鉛筆的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生會(huì)在得知田同學(xué)患重病且家庭困難時(shí),特向全校3000名同學(xué)發(fā)起“愛(ài)心”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了該校某班學(xué)生的捐款情況,并將得到的數(shù)據(jù)繪制成如下兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息解答下列問(wèn)題.
(1)該班的總?cè)藬?shù)為______人,將條形圖補(bǔ)充完整;
(2)樣本數(shù)據(jù)中捐款金額的眾數(shù)______,中位數(shù)為______;
(3)根據(jù)樣本數(shù)據(jù)估計(jì)該校3000名同學(xué)中本次捐款金額不少于20元有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證. (以上材料來(lái)源于《古證復(fù)原的原理》、《吳文俊與中國(guó)數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)
請(qǐng)根據(jù)該圖完成這個(gè)推論的證明過(guò)程.
證明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC , = , = .
可得S矩形NFGD=S矩形EBMF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的個(gè)小球,其中紅球個(gè),白球個(gè).
(1)先從袋子中取出個(gè)紅球(且為正整數(shù)),再?gòu)拇又须S機(jī)摸個(gè)小球,將“摸出白球”記為事件A,請(qǐng)完成下面表格:
事件 | 必然事件 | 隨機(jī)事件 |
的值 |
(2)先從袋子中取出個(gè)紅球,再放入個(gè)一樣的白球并掘勻,隨機(jī)摸出個(gè)白球的頻率在附近擺動(dòng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是直線外一點(diǎn),在上取兩點(diǎn)A,B,連接AD,分別以點(diǎn)B,D為圓心,AD,AB的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,連接CD,BC,則四邊形ABCD是平行四邊形,理由是:_________________________
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長(zhǎng)為半徑畫(huà)弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com