【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
【答案】(1)見解析;(2)見解析;(3)∠ACF=60°
【解析】
(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可證Rt△ABE≌Rt△CBF;
(2)延長AE交CF于D,根據(jù)三角形的內(nèi)角和得∠CDE=∠ABC=90°;
(3)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度數(shù),則由∠ACF=∠BCF+∠ACB即可求得答案.
(1)證明:
∵∠ABC=90°
∴∠ABE=∠CBF=90°
∴△ABE和△CBF是直角三角形
∵AB=BC,AE=CF
∴Rt△ABE≌Rt△CBF(HL)
(2)延長AE交CF于D,
∵△ABE≌△CBF
∴∠BAE=∠BCF
∵∠AEB=∠CED
∴∠BAE+∠AEB=90°
∴∠DCE+∠CED=90°
∴∠CDE=90°
∴AE⊥CF.
(3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=∠CAE+∠EAB,
∴∠BCA=∠BAC=45°,
∴∠EAB=15°,
∵Rt△ABE≌Rt△CBF,
∴∠EAB=∠FCB,
∴∠FCB=15°,
∴∠ACF=∠FCB+∠BCA=15°+45°=60°,
即∠ACF=60°.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點A(1,3).
(1)試確定此反比例函數(shù)的解析式;
(2)當=2時, 求y的值;
(3)當自變量從5增大到8時,函數(shù)值y是怎樣變化的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知代數(shù)式(ax-3)(2x+4)-x2-b化簡后,不含x2項和常數(shù)項.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列由5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1).其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,(即出廠價=基礎價+浮動價)其中基礎價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價-成本價)
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關(guān)系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關(guān)系式;
(3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當薄板的邊長為多少時,所獲利潤最大,求出這個最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四張質(zhì)地、大小、背面完全相同的卡片上,正面分別畫有平行四邊形、矩形、等腰三角形、菱形四個圖案.現(xiàn)把它們的正面向下隨機擺放在桌面上,從中任意抽出一張,則抽出的卡片正面圖案是中心對稱圖形的概率為___________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設A、B兩種戶型的“廉租房”共40套.投入資金不低于270萬元,又不超過296萬元.開發(fā)建設辦公室預算:一套A型“廉租房”的造價為10萬元,一套B型“廉租房”的造價為4.8萬元.
(1)請問有幾種開發(fā)建設方案?
(2) 在投入資金最少的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低1萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設縮小面積后的“廉租房”,如果同時建設A、B兩種戶型,請你直接寫出再次開發(fā)建設的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com