【題目】中,為直徑,弦,垂足為,且的中點(diǎn),連接

1)如圖1,求的度數(shù).

2)如圖2,連接并延長,交圓于點(diǎn),連接,求證:

3)在(2)問的條件下,為弧上的一點(diǎn),連接,、分別為、上的一點(diǎn),連接,連接于點(diǎn),連接、,若,,,,求的長.

【答案】1;(2)見解析;(34

【解析】

(1) 連接,通過求,推出,從而證出為等邊三角形,即可求出;

2)通過,證出,然后由,即可證出;

3)延長交圓于點(diǎn),連接、、,通過圓周角定理證出,通過證明,推出,根據(jù)在中,,推出的中位線,在中,利用勾股定理即可求出CH的長.

1)連接

、為圓的半徑,

.

的中點(diǎn),

.

,

,

∴在中,,

,

.

,

為等邊三角形,

,.

2,

∴在中,,

.

3)延長交圓于點(diǎn),連接、、

為圓的直徑,

,

,

.

,

.

,,

,

.

、為圓的半徑,

,

,

.

,

,

.

,

.

中,,

的中位線,

∵在中,

,

∴在中,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某農(nóng)戶準(zhǔn)備建一個(gè)長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻,墻對(duì)面有一個(gè)2m寬的門,另三邊用竹籬笆圍成,籬笆總長33m.圍成長方形的養(yǎng)雞場除門之外四周不能有空隙.

1)若墻長為18m,要圍成養(yǎng)雞場的面積為150m2,則養(yǎng)雞場的長和寬各為多少?

2)圍成養(yǎng)雞場的面積能否達(dá)到200m2?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備開辦“書畫、器樂、戲曲、棋類”四個(gè)興趣班.為了解學(xué)生對(duì)興趣班的選擇情況,隨機(jī)抽取部分學(xué)生調(diào)查.每人單選一項(xiàng),結(jié)果如下(尚未完善)

求本次調(diào)查的學(xué)生人數(shù)和扇形圖中“器樂”對(duì)應(yīng)圓心角的大。

若全校共有名學(xué)生,請(qǐng)估計(jì)選擇“戲曲”的人數(shù).

學(xué)校將從四個(gè)興趣班中任選取兩個(gè)參加全區(qū)青少年才藝展示活動(dòng),求恰好抽到“器樂”和“戲曲”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù),一次函數(shù),若方程的兩根是,

1)求b、c的值;

2)當(dāng)x滿足時(shí),比較x的大小并說明理由;

3)設(shè)點(diǎn)M的坐標(biāo)是,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)M的距離與到直線的距離之和最小時(shí),請(qǐng)直接寫出點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,,延長到點(diǎn),使得,連接于點(diǎn),過點(diǎn)的平行線交于點(diǎn)

1)求證:;

2)求證:的切線;

3)若,,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好開展“課后延時(shí)”服務(wù),某校抽取了部分七年級(jí)學(xué)生,就課后活動(dòng)項(xiàng)目進(jìn)行調(diào)查.學(xué)校根據(jù)學(xué)生前期統(tǒng)計(jì)給出了如下四個(gè)選項(xiàng):“球類”、“棋類”、“計(jì)算機(jī)信息類”、“其他”,并將最終調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中提供的信息,解決下列問題:

(1)本次調(diào)查共抽取了____名學(xué)生,扇形統(tǒng)計(jì)圖中,類所對(duì)應(yīng)的扇形圓心角大小為    

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)已知選擇類的同學(xué)有兩位來自七(1)班,其余來自七(2)班,調(diào)查組準(zhǔn)備從選類同學(xué)中任選兩位做細(xì)致分析求兩位同學(xué)來自同一個(gè)班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組利用一棵古樹BH測量教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE45°,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測得教學(xué)樓頂端G的仰角∠GEF60°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.計(jì)算教學(xué)樓CG的高.(結(jié)果精確到0.1,參考數(shù)據(jù):1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,拋物線yax2+bx+c過點(diǎn)A(﹣1,0),B3,0),C0,3),點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),PEy軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D

1)求拋物線的函數(shù)表達(dá)式;

2)當(dāng)AD2PD時(shí),求點(diǎn)P的坐標(biāo);

3)求線段PE的最大值;

4)當(dāng)線段PE最大時(shí),若點(diǎn)F在直線BC上且∠EFP2ACO,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,BE=DFAE、AF分別交BD于點(diǎn)GH

1)求證:BG=DH;

2)連接FE,如圖(2),當(dāng)EF=BG時(shí).

①求證:ADAH=AFDF;

②直接寫出的比值.

查看答案和解析>>

同步練習(xí)冊(cè)答案