如圖,在矩形ABCD中,點(diǎn)E為CD上一點(diǎn),將△BCE沿BE翻折后點(diǎn)C恰好落在AD邊上的點(diǎn)F處,將線段EF繞點(diǎn)F旋轉(zhuǎn),使點(diǎn)E落在BE上的點(diǎn)G處,連接CG.
(1)證明:四邊形CEFG是菱形;
(2)若AB=8,BC=10,求四邊形CEFG的面積;
(3)試探究當(dāng)線段AB與BC滿足什么數(shù)量關(guān)系時(shí),BG=CG,請寫出你的探究過程.
分析:(1)由折疊得到EF=CE,∠FEG=∠CEG,再加上公共邊GE,利用SAS可得出三角形EFG與三角形CEG全等,利用全等三角形的對應(yīng)邊相等可得出GF=CG,再由FG是線段EF旋轉(zhuǎn)得到的,故FG=EF,等量代換可得出四邊形EFGC四條邊相等,進(jìn)而確定出此四邊形為菱形;
(2)連接FC,與GE交于點(diǎn)O,由折疊得到BF=BC=10,在直角三角形ABF中,由AB及BF的長,利用勾股定理求出AF=6,再由矩形的對邊相等得到AD=10,用AD-AF求出FD的長,設(shè)DE=x,由EF=CE,用CD-DE表示出CE,即為EF的長,在直角三角形EDF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為ED的長,在直角三角形FDC中,由DC及DF的長,利用勾股定理求出CF的長,根據(jù)四邊形EFGC為菱形,對角線互相平分,得到OF為CF的一半,求出OF的長,再由菱形的對角線互相垂直,得到三角形EOF為直角三角形,由EF及OF的長,求出OE的長,根據(jù)GE=2OE,得到GE的長,最后利用菱形的對角線乘積的一半即可求出菱形EFGC的面積;
(3)當(dāng)線段AB與BC滿足
AB
BC
=
3
2
時(shí),BG=CG,理由為:在直角三角形ABF中,利用特殊角的三角函數(shù)值及銳角三角函數(shù)定義求出∠ABF的度數(shù),進(jìn)而確定出∠FBC的度數(shù),再由折疊得到∠FBE=∠EBC,求出∠EBC為30°,可得出∠BEC為60°,再由GC=CE得到三角形CGE為等邊三角形,再由30°所對的直角邊EC等于斜邊BE的一半,得到GE為BE的一半,即G為BE的中點(diǎn),利用直角三角形斜邊上的中線等于斜邊的一半,得到CG與BG相等都為BE的一半.
解答:解:(1)根據(jù)翻折的方法可得:EF=EC,∠FEG=∠CEG,
在△EFG和△ECG中,
EF=EC
∠FEG=∠CEG
GE=GE

∴△EFG≌△ECG(SAS),
∴FG=GC,
∵線段FG是由EF繞F旋轉(zhuǎn)得到的,
∴EF=FG,
∴EF=EC=FG=GC,
∴四邊形FGCE是菱形;

(2)連接FC,交GE于O點(diǎn),
根據(jù)折疊可得:BF=BC=10,
∵AB=8,
在Rt△ABF中,
根據(jù)勾股定理得:AF=
BF2-AB2
=6,
∴FD=AD-AF=10-6=4,
設(shè)EC=x,則DE=8-x,EF=x,
在Rt△FDE中:FD2+DE2=EF2,即42+(8-x)2=x2
解得:x=5,
在Rt△FDC中:FD2+DC2=CF2
則:42+82=FC2
解得:FC=4
5
,
∵四邊形FGCE是菱形,
∴FO=
1
2
FC=2
5
,EO=
1
2
GE,GE⊥FC,
在Rt△FOE中:FO2+OE2=EF2,即(2
5
2+EO2=52
解得:EO=
5
,
∴GE=2EO=2
5

則S菱形CEFG=
1
2
×FC×GE=
1
2
×4
5
×2
5
=20;

(3)當(dāng)
AB
BC
=
3
2
時(shí),BG=CG,理由為:
由折疊可得:BF=BC,∠FBE=∠CBE,
∵在Rt△ABF中,
AB
BC
=
3
2

∴cos∠ABF=
3
2
,即∠ABF=30°,
又∵∠ABC=90°,
∴∠FBC=60°,EC=
1
2
BE,
∴∠FBE=∠CBE=30°,
∵∠BCE=90°,
∴∠BEC=60°,
又∵GC=CE,
∴△GCE為等邊三角形,
∴GE=CG=CE=
1
2
BE,
∴G為BE的中點(diǎn),
則CG=BG=
1
2
BE.
點(diǎn)評:此題考查了菱形的判定與性質(zhì),等邊三角形的判定與性質(zhì),勾股定理,全等三角形的判定與性質(zhì),折疊變換及旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),以及含30°直角三角形的性質(zhì),熟練掌握性質(zhì)及判定是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動,設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動,到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案