【題目】ABCABAC,∠BAC90°,分別過B、C作過A點的直線的垂線,垂足為D、E

1)求證:AEC≌△BDA

2)如果CE2,BD4,求ED的長是多少?

【答案】(1)證明見解析;(2)6.

【解析】

1)由題意得出∠CEA=90°,∠ADB=90°,證得∠ACE=BAD,由AAS即可證得AEC≌△BDA
2)由AEC≌△BDA,得出AD=CE=2,AE=BD=4,即可得出結果.

1)∵CEED,

∴∠CEA90°,

BDED,

∴∠ADB90°,

∵∠BAC90°

∴∠CAE+BAD90°,

∵∠CAE+ACE90°,

∴∠ACE=∠BAD

AECBDA中,

,

∴△AEC≌△BDAAAS);

2)∵△AEC≌△BDA

ADCE2,AEBD4,

EDAE+AD4+26

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:∠AOB和兩點C、D,求作一點P,使PC=PD,且點P到∠AOB的兩邊的距離相等.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的頂點AC分別在y軸和x軸上,邊BC的中點Fy軸上,若反比例函數(shù)y的圖象恰好經(jīng)過CD的中點E,則OA的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過點A12).

1)當b1,c=﹣4時,求該二次函數(shù)的表達式;

2)已知點Mt1,5),Nt+1,5)在該二次函數(shù)的圖象上,請直接寫出t的取值范圍;

3)當a1時,若該二次函數(shù)的圖象與直線y3x1交于點P,Q,將此拋物線在直線PQ下方的部分圖象記為C,

①試判斷此拋物線的頂點是否一定在圖象C上?若是,請證明;若不是,請舉反例;

②已知點P關于拋物線對稱軸的對稱點為P′,若P′在圖象C上,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A,B兩點,頂點為C,點P為拋物線上,且位于x軸下方.

(1)如圖1,若P(1,﹣3),B(4,0).
①求該拋物線的解析式;
②若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2)如圖2,已知直線PA,PB與y軸分別交于E、F兩點.當點P運動時, 是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于點A(﹣5,0)和點B(3,0).與y軸交于點C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和Q,交直線AC于點M和N.交x軸于點E和F.

(1)求拋物線的解析式;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點Q的坐標;
(3)在矩形的平移過程中,當以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(﹣ ﹣2+(π﹣ 0﹣| |+tan60°+(﹣1)2017

查看答案和解析>>

同步練習冊答案