【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1) 利用對(duì)應(yīng)兩角相等, 證明兩個(gè)三角形相似;
(2) 利用,可以求出線段的長(zhǎng)度;然后在中, 利用勾股定理求出線段的長(zhǎng)度 .
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠ADF=∠CED,∠B+∠C=180°;
∵∠AFE+∠AFD=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(2)解:∵四邊形ABCD是平行四邊形,
∴DC=AB=8.
∵△ADF∽△DEC,
,
,
∵AD∥BC,AE⊥BC,
∴AE⊥AD.
在Rt△ADE中,∠EAD=90°,DE=12,AD=6,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、圖②均是6×6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)為1,小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A、B、C、D均在格點(diǎn)上.用直尺在給定的網(wǎng)格中按要求畫(huà)圖,所畫(huà)圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫(xiě)畫(huà)法.
(1)在圖①中以線段AB為腰畫(huà)一個(gè)等腰三角形ABM,畫(huà)出的△ABM的面積是 .
(2)在圖②中以線段CD為邊畫(huà)一個(gè)四邊形CDEF,使∠FCD+∠EDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖(1),在等邊三角形ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN= °.
類比探究
(2)如圖(2),在等邊三角形ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
拓展延伸
(3)如圖(3),在等腰三角形ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個(gè)條件,使得∠ABC=∠ACN仍成立,寫(xiě)出你所添加的條件,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(diǎn)(,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當(dāng)FH=,DM=4時(shí),求DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,3),(0,4)之間(包含端點(diǎn)),則下列結(jié)論:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m為任意實(shí)數(shù));⑤一元二次方程 有兩個(gè)不相等的實(shí)數(shù)根,其中正確的有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次臺(tái)風(fēng)來(lái)襲時(shí),一棵大樹(shù)樹(shù)干AB(假定樹(shù)干AB垂直于地面)被刮傾斜15°后折斷倒在地上,樹(shù)的項(xiàng)部恰好接觸到地面D(如圖所示),量得樹(shù)干的傾斜角為∠BAC=15°,大樹(shù)被折斷部分和地面所成的角∠ADC=60°,AD=4米,求這棵大樹(shù)AB原來(lái)的高度是( )米?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):≈1.4,≈1.7,≈2.4)
A.9B.10C.11D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點(diǎn)P從B出發(fā)沿BA向A運(yùn)動(dòng),速度為每秒1cm,點(diǎn)E是點(diǎn)B以P為對(duì)稱中心的對(duì)稱點(diǎn),點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)Q從A出發(fā)沿AC向C運(yùn)動(dòng),速度為每秒2cm,當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△AEQ為等腰三角形?(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A,C 在坐標(biāo)軸上,點(diǎn)B(,),P是射線OB上一點(diǎn),將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得,Q是點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).
(1)如圖(1)當(dāng)OP = 時(shí),求點(diǎn)Q的坐標(biāo);
(2)如圖(2),設(shè)點(diǎn)P(,)(),的面積為S. 求S與的函數(shù)關(guān)系式,并寫(xiě)出當(dāng)S取最小值時(shí),點(diǎn)P的坐標(biāo);
(3)當(dāng)BP+BQ = 時(shí),求點(diǎn)Q的坐標(biāo)(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com