【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長(zhǎng)為( )
A.6
B.7
C.8
D.9
【答案】C
【解析】解:∵在△ABC中,∠ACB=90°,AB=9,cosB= , ∴BC=ABcosB=18× =12,AC= =6 .
∵把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,
∴△ABC≌△EDC,BC=DC=12,AC=EC=6 ,∠BCD=∠ACE,
∴∠B=∠CAE.
作CM⊥BD于M,作CN⊥AE于N,則∠BCM= ∠BCD,∠ACN= ∠ACE,
∴∠BCM=∠ACN.
∵在△ANC中,∠ANC=90°,AC=6 ,cos∠CAN=cosB= ,
∴AN=ACcos∠CAN=6 × =4 ,
∴AE=2AN=8 .
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識(shí),掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法),以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進(jìn)行如下操作:以點(diǎn)B為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交BA,BC于點(diǎn)G,H;再分別以點(diǎn)G,H為圓心,大于GH的長(zhǎng)為半徑畫(huà)弧,兩弧在∠ABC內(nèi)部相交于點(diǎn)O,畫(huà)射線BO,交AD于點(diǎn)E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,BC切⊙O于點(diǎn)B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,求扇形OAB的面積.(計(jì)算結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,AB=BC,點(diǎn)E、F在AC上,∠EBF=45°,若AE=1,CF=2,則AB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查公司對(duì)本區(qū)域的共享單車(chē)數(shù)量及使用次數(shù)進(jìn)行了調(diào)查發(fā)現(xiàn),今年3月份第1周共有各類(lèi)單車(chē)1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛,調(diào)查還發(fā)現(xiàn)某款單車(chē)深受群眾喜愛(ài),第1周該單車(chē)的每輛平均使用次數(shù)是這一周所有單車(chē)平均使用次數(shù)的2.5倍,第2、第3周該單車(chē)的每輛平均使用次數(shù)都比前一周增長(zhǎng)一個(gè)相同的百分?jǐn)?shù)m,第3周所有單車(chē)的每輛平均使用次數(shù)比第1周增加的百分?jǐn)?shù)也是m,而且第3周該款單車(chē)(共100輛)的總使用次數(shù)占到所有單車(chē)總使用次數(shù)的四分之一.(注:總使用次數(shù)=每輛平均使用次數(shù)×車(chē)輛數(shù))
(1)求第3周該區(qū)域內(nèi)各類(lèi)共享單車(chē)的數(shù)量;
(2)求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點(diǎn)G.
(1)試說(shuō)明DF=CE;
(2)若AC=BF=DF,求∠ACE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動(dòng)點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;
(2)在動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C過(guò)程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動(dòng)點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、②、③均是4×4的正方形網(wǎng)格,每個(gè)小正方形頂點(diǎn)叫做格點(diǎn),點(diǎn)O和線段AB的端點(diǎn)在格點(diǎn)上,按要求完成下列作圖.
(1)在圖①、②中分別找到格點(diǎn)C、D,使以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)O到這個(gè)四邊形的兩個(gè)端點(diǎn)的距離相等,畫(huà)出兩個(gè)這樣的平行四邊形.
(2)在圖③中找到格點(diǎn)E、F,使以A、B、E、F為頂點(diǎn)的四邊形的面積最大,且點(diǎn)O到這個(gè)四邊形的兩個(gè)端點(diǎn)的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=8,以C為圓心適當(dāng)長(zhǎng)為半徑畫(huà)弧分別交BC,CD于M,N兩點(diǎn),分別以M,N為圓心,以大于 MN的長(zhǎng)為半徑畫(huà)弧,兩弧在∠BCD的內(nèi)部交于點(diǎn)P,連接CP并延長(zhǎng)交AD于E,交BA的延長(zhǎng)線于F,則AE+AF的值等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com