【題目】小明早上7點(diǎn)騎自行車從家出發(fā),以每小時(shí)12千米的速度到距家4千米的學(xué)校上課,行至距學(xué)校1千米的地方時(shí),自行車突然發(fā)生故障,小明只得改為步行前往學(xué)校,如果他想在7點(diǎn)30分之前趕到學(xué)校,那么他步行的速度至少應(yīng)為多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題時(shí)需要思考:是否解決過(guò)與其類似的問(wèn)題.小明從問(wèn)題1解題思路中獲得啟發(fā)從而解決了問(wèn)題2.
問(wèn)題1:如圖①,在正方形ABCD中,E、F是BC、CD上兩點(diǎn),∠EAF=45°.
求證:∠AEF=∠AEB.
小明給出的思路為:延長(zhǎng)EB到H,滿足BH=DF,連接AH.請(qǐng)完善小明的證明過(guò)程.
問(wèn)題2:如圖②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D為AB中點(diǎn),E、F是AC、BC邊上兩點(diǎn),∠EDF=45°.
(1)求點(diǎn)D到EF的距離.
(2)若AE=a,則S△DEF= (用含字母a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(8,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D、E,且tan∠BOA=.
(1)求反比例函數(shù)的解析式和n的值;
(2)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求G點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13 200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28 800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完利潤(rùn)率不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為極大地滿足人民生活的需求,豐富市場(chǎng)供應(yīng),某區(qū)農(nóng)村溫棚設(shè)施農(nóng)業(yè)迅速發(fā)展,溫棚種植面積在不斷擴(kuò)大.在耕地上培成一行一行的長(zhǎng)方形土埂,按順序間隔種植不同農(nóng)作物的方法叫分壟間隔套種.科學(xué)研究表明:在塑料溫棚中分壟間隔套種高、矮不同的蔬菜和水果(同一種緊挨在一起種植不超過(guò)兩壟),可增加它們的光合作用,提高單位面積的產(chǎn)量和經(jīng)濟(jì)效益.
現(xiàn)有一個(gè)種植總面積為540 m2的長(zhǎng)方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過(guò)14壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤(rùn)分別如下:
占地面積(m2/壟) | 產(chǎn)量(千克/壟) | 利潤(rùn)(元/千克) | |
西紅柿 | 30 | 160 | 1.1 |
草莓 | 15 | 50 | 1.6 |
(1)若設(shè)草莓共種植了壟,通過(guò)計(jì)算說(shuō)明共有幾種種植方案,分別是哪幾種;
(2)在這幾種種植方案中,哪種方案獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線與坐標(biāo)軸交于點(diǎn)A,C,經(jīng)過(guò)點(diǎn)A,C的拋物線y=ax2+bx-3與x軸交于點(diǎn)B(2,0).
(1)求拋物線的解析式;
(2)點(diǎn)D是拋物線在第三象限圖象上的動(dòng)點(diǎn),是否存在點(diǎn)D,使得△DAC的面積最大,若存在,請(qǐng)求這個(gè)最大值并求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)D作DE⊥x軸于E,交AC于F,若AC恰好將△ADE的面積分成1:4兩部分,請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com