【題目】如圖,AB是⊙O的直徑,PAPC與⊙O分別相切于點(diǎn)A,C,PCAB的延長(zhǎng)線于點(diǎn)D,DEPOPO的延長(zhǎng)線于點(diǎn)E

(1)求證:∠EPD=EDO

(2)PC=3,tanPDA=,求OE的長(zhǎng).

【答案】1)見解析;(2.

【解析】

1)由切線的性質(zhì)即可得證.2)連接OC,利用tanPDA=,可求出CD=2,進(jìn)而求得OC=,再證明△OED∽△DEP,根據(jù)相似三角形的性質(zhì)和勾股定理即可求出OE的長(zhǎng).

1)證明:∵PA,PC與⊙O分別相切于點(diǎn)AC,
∴∠APO=CPO, PAAO,

DEPO
∴∠PAO=E=90°,

∵∠AOP=EOD
∴∠APO=EDO,
∴∠EPD=EDO.

2)連接OC,
PA=PC=3
tanPDA=,
∴在RtPAD中,

AD=4,PD==5,
CD=PD-PC=5-3=2,
tanPDA=
∴在RtOCD中,

OC=,

OD==,

∵∠EPD=ODE,∠OCP=E=90°,
∴△OED∽△DEP,
===2,
DE=2OE,
RtOED中,OE2+DE2=OD2,即5OE2==,
OE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CDAB于點(diǎn)E,連接ADBC,CO

1)當(dāng)∠BCO25°時(shí),求∠A的度數(shù);

2)若CD4,BE4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】港珠澳大橋是中國(guó)境內(nèi)一座連接香港、珠海和澳門的橋隧工程,位于中國(guó)廣東省伶仃洋區(qū)域內(nèi),為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段,青州航道橋“中國(guó)結(jié)三地同心”主題的斜拉索塔如圖(1)所示.某數(shù)學(xué)興趣小組根據(jù)材料編制了如下數(shù)學(xué)問題,請(qǐng)你解答.

如圖(2),BC,DE為主塔AB(主塔AB與橋面AC垂直)上的兩條鋼索,橋面上C、D兩點(diǎn)間的距離為16m,主塔上A、E兩點(diǎn)的距離為18.4m,已知BC與橋面AC的夾角為30°,DE與橋面AC的夾角為38°。求主塔AB的高.(結(jié)果精確到1米,參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,≈1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動(dòng)如下的兩個(gè)轉(zhuǎn)盤(每個(gè)轉(zhuǎn)盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤時(shí),該轉(zhuǎn)盤指針指向歌曲“3”的概率是

(2)若允許該歌手替換他最不擅長(zhǎng)的歌曲“3”,即指針指向歌曲“3”時(shí),該歌手就選擇自己最擅長(zhǎng)的歌曲“1”, 請(qǐng)用樹形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三角形ABC的邊長(zhǎng)是4,分別以點(diǎn)B,C為圓心,以r為半徑作兩條弧,設(shè)兩弧與邊BC圍成的陰影部分面積為S,當(dāng) 4時(shí),S的取值范圍是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中紅球有2個(gè),藍(lán)球有1個(gè),現(xiàn)從中任意摸出一個(gè)是紅球的概率為

(1)求袋中黃球的個(gè)數(shù);

(2)第一次摸出一個(gè)球(不放回),第二次再摸一個(gè)小球,請(qǐng)用畫樹狀圖或列表法求兩次摸到都是紅球的概率;

(3)若規(guī)定摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得1分,小明共摸6次小球(每次摸1個(gè)球,摸后放回)得20分,問小明有哪幾種摸法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn).若∠BOA的兩邊分別于函數(shù)的圖像交于B、A兩點(diǎn),則∠OAB大小的變化趨勢(shì)為 ( )

A. 逐漸變小B. 逐漸變大C. 時(shí)大時(shí)小D. 保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前世界上最長(zhǎng)的跨海大橋——杭州灣跨海大橋通車了.通車后,地到寧波港的路程比原來(lái)縮短了.已知運(yùn)輸車速度不變時(shí),行駛時(shí)間將從原來(lái)的縮短到.

(1)求地經(jīng)杭州灣跨海大橋到寧波港的路程.

(2)若貨物運(yùn)輸費(fèi)用包括運(yùn)輸成本和時(shí)間成本,某車貨物從地到寧波港的運(yùn)輸成本是每千米元,時(shí)間成本是每時(shí)元,那么該車貨物從地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?

(3)A地準(zhǔn)備開辟寧波方向的外運(yùn)路線,即貨物從地經(jīng)杭州灣跨海大橋到寧波港,再?gòu)膶幉ǜ圻\(yùn)到地.若有一批貨物(不超過(guò)車)從地按外運(yùn)路線運(yùn)到地的運(yùn)費(fèi)需元,其中從地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到地的海上運(yùn)費(fèi)對(duì)一批不超過(guò)車的貨物計(jì)費(fèi)方式是:元,當(dāng)貨物每增加車時(shí),每車的海上運(yùn)費(fèi)就減少元,問這批貨物有幾車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案