【題目】如圖,面積為16的正方形ABCD中,有一個(gè)小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF=1,則小正方形的周長(zhǎng)為( 。

A. 7 B. 6 C. 5 D. 4

【答案】C

【解析】

由條件可證明BEF∽△CFD,則有,代入可求得BE,在RtBEF中可求得EF,即小正方形的周長(zhǎng)

∵四邊形ABCD和四邊形EFGH都是正方形,

∴∠B=C=EFG=

∴∠BFE+DFC=BEF+BFE=

∴∠BEF=DFC,

∴△BEFCFD,

又∵正方形ABCD面積為16,∴BC=CD=4,BF=1,則CF=3,

BE=

RtBEF,由勾股定理可求得EF=

即小正方形的周長(zhǎng)為5,

故答案選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等邊三角形OAB的頂點(diǎn)A的坐標(biāo)為(5,0),頂點(diǎn)B在第一象限,函數(shù)y=(x>0)的圖象分別交邊OA、AB于點(diǎn)C、D.若OC=2AD,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).

(1)求二次函數(shù)的解析式.

(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo).

(3)該二次函數(shù)的對(duì)稱軸交x軸于C點(diǎn).連接BC,并延長(zhǎng)BC交拋物線于E點(diǎn),連接BD,DE,求BDE的面積.

(4)拋物線上有一個(gè)動(dòng)點(diǎn)P,與A,D兩點(diǎn)構(gòu)成ADP,是否存在SADP=SBCD?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題發(fā)現(xiàn)

如圖,中,平分,平分,經(jīng)過(guò)點(diǎn),與、相交于點(diǎn)、,且

求證:的周長(zhǎng)等于

1)小明做完該題后,發(fā)現(xiàn)、、存在特定的數(shù)量關(guān)系,請(qǐng)你直接寫(xiě)出這個(gè)數(shù)量關(guān)系;

拓廣探索

2)如圖1,將題中“平分”改為“平分的外角”,其他條件不變,請(qǐng)判斷、、的數(shù)量關(guān)系,并證明這個(gè)數(shù)量關(guān)系;

3)如圖2,將題中“平分,平分”改為“平分的外角,平分的外角”,其他條件不變,請(qǐng)直接寫(xiě)出、的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第20屆世界杯足球賽正在如火如荼的進(jìn)行,爸爸想通過(guò)一個(gè)游戲決定小明能否看今晚的比賽:在一個(gè)不透明的盒子中放入三張卡片,每張卡片上寫(xiě)著一個(gè)實(shí)數(shù),分別為3,, 2每張卡片除了上面的實(shí)數(shù)不同以外其余均相同,爸爸讓小明從中任意取一張卡片,如果抽到的卡片上的數(shù)是有理數(shù),就讓小明看比賽,否則就不能看

1請(qǐng)你直接寫(xiě)出按照爸爸的規(guī)則小明能看比賽的概率;

2小明想了想,和爸爸重新約定游戲規(guī)則:自己從盒子中隨機(jī)抽取兩次,每次抽取一張卡片,第一次抽取后記下卡片上的數(shù),再將卡片放回盒中抽取第二次,如果抽取的兩數(shù)之積是有理數(shù),自己就看比賽,否則就不看請(qǐng)你用列表法或樹(shù)狀圖法求出按照此規(guī)則小明看比賽的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AB=3cm,BC=5cm,ACAB.ACD沿AC的方向勻速平移得到PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB方向勻速移動(dòng),速度為1cm/s;當(dāng)PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖.設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),PQAB?

(2)當(dāng)t=3時(shí),求QMC的面積;

(3)是否存在某一時(shí)刻t,使PQMQ?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)七班共有45人,該班計(jì)劃為每名學(xué)生購(gòu)買(mǎi)一套學(xué)具,超市現(xiàn)有AB兩種品牌學(xué)具可供選擇已知1A學(xué)具和1B學(xué)具的售價(jià)為45元;2A學(xué)具和5B學(xué)具的售價(jià)為150元.

、B兩種學(xué)具每套的售價(jià)分別是多少元?

現(xiàn)在商店規(guī)定,若一次性購(gòu)買(mǎi)A型學(xué)具超過(guò)20套,則超出部分按原價(jià)的6折出售設(shè)購(gòu)買(mǎi)A型學(xué)具a且不超過(guò)30套,購(gòu)買(mǎi)AB兩種型號(hào)的學(xué)具共花費(fèi)w元.

請(qǐng)寫(xiě)出wa的函數(shù)關(guān)系式;

請(qǐng)幫忙設(shè)計(jì)最省錢(qián)的購(gòu)買(mǎi)方案,并求出所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)求出四邊形ABPC的面積最大時(shí)的P點(diǎn)坐標(biāo)和四邊形ABPC的最大面積;

(3)在直線BC找一點(diǎn)Q,使得△QOC為等腰三角形,寫(xiě)出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃一次性購(gòu)買(mǎi)排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買(mǎi)2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購(gòu)買(mǎi)排球和籃球共60個(gè),總費(fèi)用不超過(guò)3800元,且購(gòu)買(mǎi)排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購(gòu)買(mǎi)時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案