【題目】某中學(xué)七班共有45人,該班計劃為每名學(xué)生購買一套學(xué)具,超市現(xiàn)有A、B兩種品牌學(xué)具可供選擇已知1A學(xué)具和1B學(xué)具的售價為45元;2A學(xué)具和5B學(xué)具的售價為150元.

、B兩種學(xué)具每套的售價分別是多少元?

現(xiàn)在商店規(guī)定,若一次性購買A型學(xué)具超過20套,則超出部分按原價的6折出售設(shè)購買A型學(xué)具a且不超過30套,購買A、B兩種型號的學(xué)具共花費w元.

請寫出wa的函數(shù)關(guān)系式;

請幫忙設(shè)計最省錢的購買方案,并求出所需費用.

【答案】(1)A、B兩種學(xué)具每套的售價分別是2520元;(2),;購買45B型學(xué)具所需費用最省錢,所需費用為900.

【解析】

(1)設(shè)A種品牌的學(xué)具售價為x元,B種品牌的學(xué)具售價為y元,根據(jù)1A學(xué)具和1B學(xué)具的售價為45元,2A學(xué)具和5B學(xué)具的售價為150元,列出二元一次方程組解答即可;

(2)①根據(jù)總花費=購買A型學(xué)具的費用+購買B型學(xué)具的費用,列出函數(shù)關(guān)系式即可;

②分兩種情況進行比較即可,第一種情況:由函數(shù)關(guān)系式可知a=30時花費已經(jīng)最低,需要費用950元;第二種情況:購買45B型學(xué)具需要900.

解:設(shè)A種品牌的學(xué)具售價為x元,B種品牌的學(xué)具售價為y元,根據(jù)題意有,

,解之可得,

所以A、B兩種學(xué)具每套的售價分別是2520元;

因為,其中購買A型學(xué)具的數(shù)量為a,

則購買費用

,

即函數(shù)關(guān)系式為:,;

符合題意的還有以下情況:

、以的方案購買,因為-50,所以時,w為最小值,

;

、由于受到購買A型學(xué)具數(shù)量的限制,購買A型學(xué)具30w已是最小,

所以全部購買B型學(xué)具45套,此時元,

綜上所述,購買45B型學(xué)具所需費用最省錢,所需費用為:900元.

故答案為:(1)A、B兩種學(xué)具每套的售價分別是2520元;(2)w=-5a+1100,(20<a30);②購買45B型學(xué)具所需費用最省錢,所需費用為900.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于A,B兩點,頂點C的縱坐標為-2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1 , 則下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號)①b>0;②a-b+c<0;③陰影部分的面積為4;④若c=-1,則b2=4a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點D,AM⊥CD于點M,連接AD,BD.

(1)求證:∠ADC=∠ABD;
(2)若AD=2 ,⊙O的半徑為3,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( 。.

A. “打開電視機,正在播放《動物世界》”是必然事件

B. 某種彩票的中獎概率為,說明每買1000張,一定有一張中獎

C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2的⊙O中,弦AB長為2.

(1)求點O到AB的距離.
(2)若點C為⊙O上一點(不與點A,B重合),求∠BCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

已知:如圖,點D,E,F分別在線段AB,BC,AC上,連接DEEF,DM平分∠ADEEF于點M,∠1+2=180°.

求證: B =BED

證明:∵∠1+2=180°(已知),

又∵∠1+BEM=180°( ),

∴∠2=BEM   ),

DM_______________________________________________).

∴∠ADM =B_________________________________________),

MDE =BED_______________________________________).

又∵DM平分∠ADE (已知),

∴∠ADM =MDE ( )

∴∠B =BED(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點P是線段AB上的動點(不與A、B重合),過點P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點C.

(1)求a、b的值
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】明的父親在批發(fā)市場按每千克1.8元批發(fā)了若干千克的西瓜進城出售,為了方便,他帶了一些零錢備用.他先按市場價售出一些后,又降價出售.售出西瓜千克數(shù)x與他手中持有的錢數(shù)y(含備用零錢)的關(guān)系如圖所示,結(jié)合圖像回答下列問題:

(1)降價前他每千克西瓜出售的價格是多少?

(2)隨后他按每千克下降0.5元將剩余的西瓜售完,這時他手中的錢(含備用的錢)450元, 問他一共批發(fā)了多少千克的西瓜?

(3)小明的父親這次一共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達終點后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時時,甲、乙在途中相遇;

②出發(fā)1.5小時時,乙比甲多行駛了60千米;

③出發(fā)3小時時,甲、乙同時到達終點;

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案