【題目】如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0α90°)得到矩形AEFG.延長(zhǎng)CBEF交于點(diǎn)H.

(1)求證:BH=EH;

(2)如圖2,當(dāng)點(diǎn)G落在線段BC上時(shí),求點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng).

【答案】(1)見解析;(2)B點(diǎn)經(jīng)過(guò)的路徑長(zhǎng)為

【解析】分析:(1)、連接AH,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出AB=AE,ABH=AEH=90°,根據(jù)AH為公共邊得出RtABHRtAEH全等,從而得出答案;(2)、根據(jù)題意得出∠EAB的度數(shù),然后根據(jù)弧長(zhǎng)的計(jì)算公式得出答案.

詳解:(1)、證明:如圖1中,連接AH,

由旋轉(zhuǎn)可得AB=AE,ABH=AEH=90°,又∵AH=AH,RtABHRtAEH,BH=EH.

(2)、解:由旋轉(zhuǎn)可得AG=AD=4,AE=AB,EAG=BAC=90°,RtABG中,AG=4,AB=2,

cosBAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的長(zhǎng)為=π,

B點(diǎn)經(jīng)過(guò)的路徑長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 

猜想證明:

2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1S2, 之間的數(shù)量關(guān)系,并說(shuō)明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1E的對(duì)應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過(guò)B,M 兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)香洲區(qū)全面推進(jìn)書香校園建設(shè)的號(hào)召,班長(zhǎng)小青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間t(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t7,B:7t14,C:14t21,D:t21),根據(jù)圖中信息,解答下列問(wèn)題:

(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);

(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書心得發(fā)言代表,請(qǐng)用列表或樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天戶外活動(dòng)的平均時(shí)間不少于小時(shí),小明為了解本班學(xué)生參加戶外活動(dòng)的情況,特進(jìn)行了問(wèn)卷調(diào)查.

1)在進(jìn)行問(wèn)卷調(diào)查時(shí)有如下步驟,按順序排列為________(填序號(hào)).

①發(fā)問(wèn)卷,讓被調(diào)查人填寫;②設(shè)計(jì)問(wèn)卷;③對(duì)問(wèn)卷的數(shù)據(jù)進(jìn)行收集與整理;

④收回問(wèn)卷;⑤得出結(jié)論.

2)小明根據(jù)調(diào)查結(jié)果,就本班學(xué)生每天參加戶外活動(dòng)的平均時(shí)間繪制了以下兩幅不完整的統(tǒng)計(jì)圖(圖中表示大于等于同時(shí)小于,圖中類似的記號(hào)均表示這一含義),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

①在這次調(diào)查中共調(diào)查了多少名學(xué)生?

②通過(guò)計(jì)算補(bǔ)全頻數(shù)分布直方圖;

③請(qǐng)你根據(jù)以上統(tǒng)計(jì)結(jié)果,就學(xué)生參加戶外活動(dòng)情況提出建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長(zhǎng)CD、BA 交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=ACB.

(1)求證:AH是⊙O的切線;

(2)若OB=4,AC=6,求sinACB的值;

(3)若,求證:CD=DH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,長(zhǎng)方形ABCD中,E是邊AD上一點(diǎn),且AE=6cm,點(diǎn)PB出發(fā),沿折線BE-ED-DC勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C停止.P的運(yùn)動(dòng)速度為2cm/s,運(yùn)動(dòng)時(shí)間為ts),BPC的面積為ycm2),yt的函數(shù)關(guān)系圖象如圖②,則下列結(jié)論正確的有( 。

a=7 AB=8cm b=10 ④當(dāng)t=10s時(shí),y=12cm2

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng).(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明在數(shù)學(xué)課外小組活動(dòng)時(shí)遇到這樣一個(gè)問(wèn)題:

如果一個(gè)不等式(含有不等號(hào)的式子)中含有絕對(duì)值,并且絕對(duì)值符號(hào)中含有未知數(shù),我們把這個(gè)不等式叫做絕對(duì)值不等式.

求絕對(duì)值不等式的解集(滿足不等式的所有解).

小明同學(xué)的思路如下:

先根據(jù)絕對(duì)值的定義,求出恰好是3時(shí)的值,并在數(shù)軸上表示為點(diǎn),,如圖所示.觀察數(shù)軸發(fā)現(xiàn),

以點(diǎn),為分界點(diǎn)把數(shù)軸分為三部分:

點(diǎn)左邊的點(diǎn)表示的數(shù)的絕對(duì)值大于3;

點(diǎn)之間的點(diǎn)表示的數(shù)的絕對(duì)值小于3;

點(diǎn)B右邊的點(diǎn)表示的數(shù)的絕對(duì)值大于3.

因此,小明得出結(jié)論,絕對(duì)值不等式的解集為:.

參照小明的思路,解決下列問(wèn)題:

1)請(qǐng)你直接寫出下列絕對(duì)值不等式的解集.

的解集是

的解集是 .

2)求絕對(duì)值不等式的解集.

3)直接寫出不等式的解集是

查看答案和解析>>

同步練習(xí)冊(cè)答案