【題目】某公司計劃購買、兩種型號的機器人搬運材料,已知型機器人比型機器人每小時多搬運材料,且型機器人搬運的材料所用的時間與型機器人搬運材料所用的時間相同.

1)求、兩種型號的機器人每小時分別搬運多少材料?

2)該公司計劃采購、兩種型號的機器人共臺,要求每小時搬運的材料不得少于,則至少購進型機器人多少臺?

【答案】1型每小時搬動,型每小時搬動;(2)至少購進型機器人

【解析】

1)設(shè)B型機器人每小時搬運x千克材料,則A型機器人每小時搬運(x+15)千克材料,根據(jù)A型機器人搬運500kg材料所用的時間與B型機器人搬運400kg材料所用的時間相同建立方程求出其解就可以得出結(jié)論;

2)設(shè)購進A型機器人a臺,根據(jù)每小時搬運材料不得少于700kg列出不等式并解答.

1)設(shè)型機器人每小時搬運材料,則型機器人每小時搬運,

依題意得:,

解得:

經(jīng)檢驗,是原方程的解,

答:型每小時搬動型每小時搬動;

2)設(shè)購進臺,臺,

由題意,得,

解得:

答:至少購進型機器人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,ADCD,(點D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長線相交于點E,且DE=12,AD=9,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:

(模型呈現(xiàn))(1)如圖1,,,過點于點,過點于點.,得.,可以推理得到.進而得到 , .我們把這個數(shù)學(xué)模型稱為模型或一線三等角模型;

(模型應(yīng)用)(2)①如圖2,,,連接,,且于點與直線交于點的中點;

②如圖3,在平面直角坐標系中,點的坐標為,點為平面內(nèi)任一點.是以為斜邊的等腰直角三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點,與軸的另一個交點為,將拋物線向右平移個單位得到拋物線, 軸于 兩點(點在點的左邊),交軸于點

)求拋物線的解析式及頂點坐標.

)以為斜邊向上作等腰直角三角形,當點落在拋物線的對稱軸上時,求拋物線的解析式.

)若拋物線的對稱軸存在點,使為等邊三角形,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時分別從 A,B 兩處出發(fā),沿直線 AB 作勻速運動,同時到達C ,B AC ,甲的速度是乙的速度的1.5 ,設(shè) t()后甲、 乙兩遙控車與 B 處的距離分別為 d1,d2, d1,d2 與出發(fā)時間 t 的函數(shù)關(guān)系如圖,那么在兩車相遇前,兩車與 B 點的距離相等時,t 的值為(

A.0.4B.0.5C.0.6D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是      度;

(2)若連結(jié)EF,則△AEF 三角形;并證明;

(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC>60°,BAC<60°,AB為邊作等邊△ABD(點C、D在邊AB的同側(cè)),連接CD

1若∠ABC90°,BAC30°,求∠BDC的度數(shù);

2當∠BAC2BDC,請判斷△ABC的形狀并說明理由;

3)當∠BCD等于多少度時,∠BAC2BDC恒成立

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù),是常數(shù),)的圖象過,兩點.

1)在圖中畫出該一次函數(shù)并求其表達式;

2)若點在該一次函數(shù)圖象上,求的值;

3)把的圖象向下平移3個單位后得到新的一次函數(shù)圖象,在圖中畫出新函數(shù)圖形,并直接寫出新函數(shù)圖象對應(yīng)的表達式.

查看答案和解析>>

同步練習(xí)冊答案