【題目】已知二次函數(shù).
(1)若此函數(shù)圖象與軸只有一個(gè)交點(diǎn),試寫出與滿足的關(guān)系式.
(2)若,點(diǎn),,是該函數(shù)圖象上的3個(gè)點(diǎn),試比較,,的大小.
(3)若,當(dāng)時(shí),函數(shù)隨的增大而增大,求的取值范圍.
【答案】(1);(2)當(dāng)時(shí),;當(dāng)時(shí),;(3)
【解析】
(1)根據(jù)即可求解;
(2)當(dāng)時(shí),二次函數(shù)圖象的對(duì)稱軸為,即為頂點(diǎn).再分a<0和a>0兩種情況分別討論解決;
(3)當(dāng)時(shí),即函數(shù)表達(dá)式為,得出函數(shù)圖象經(jīng)過定點(diǎn),.要當(dāng)時(shí),函數(shù)隨的增大而增大. 必須滿足:圖象開口向上,對(duì)稱軸在直線的左側(cè),即可解題.
解:(1)由條件得,,即.
(2)當(dāng)時(shí),二次函數(shù)圖象的對(duì)稱軸為,即為頂點(diǎn).
①當(dāng)時(shí),圖象開口向上,為最小值,
∵,
∴,
∴.
②當(dāng)時(shí),圖象開口向下,為最大值,
∵,∴,
∴.
(3)當(dāng)時(shí),即函數(shù)表達(dá)式為,
∴函數(shù)圖象經(jīng)過定點(diǎn),.
∴要當(dāng)時(shí),函數(shù)隨的增大而增大.
必須滿足:圖象開口向上,對(duì)稱軸在直線的左側(cè),
即,,
∴的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O在線段AB上,AO=4,OB=2,OC為射線,且∠BOC=60°,動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)O出發(fā),沿射線OC做運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),則OP= ,S△ABP= ;
(2)當(dāng)△ABP是直角三角形時(shí),求t的值;
(3)如圖2,當(dāng)AP=AB時(shí),過點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值.為了求AQBP的值,小華同學(xué)嘗試過O點(diǎn)作OE∥AP交BP于點(diǎn)E,試?yán)眯∪A同學(xué)給我們的啟發(fā)補(bǔ)全圖形并求AQBP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:
小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個(gè)交點(diǎn)為(3,0); ②函數(shù)的最大值為6;③拋物線的對(duì)稱軸是;④在對(duì)稱軸左側(cè),y隨x增大而增大.其中正確有( )
A. ①②B. ①③C. ①②③D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3)、B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△QAB,使點(diǎn)Q的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P、B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍;
(3)在圖2中的線段AB上確定點(diǎn)N,連結(jié)線段PN,使S△PAN=S△PBN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)是重心,連結(jié)并延長交于點(diǎn);連結(jié)并延長交于點(diǎn),過點(diǎn)作交于點(diǎn).若的面積為8,則的面積為( )
A.4B.2C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次綜合實(shí)踐活動(dòng)中,小亮要測量一樓房的高度,先在坡面D處測得樓房頂部A的仰角為300 ,沿坡面向下走到坡腳C處,然后在地面上沿CB向樓房方向繼續(xù)行走10米到達(dá)E處,測得樓房頂部A的仰角為600 .已知坡面CD=10米,山坡的坡度(坡度 是指坡面的鉛直高度與水平寬度的比),
(1)求點(diǎn)D離地面高度(即點(diǎn)D到直線BC的距離);
(2)求樓房AB高度.(結(jié)果保留根式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線與x軸交于點(diǎn).
(1)求的值;
(2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D.
①當(dāng)時(shí),判斷線段PD與PC的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),分別連接AC、CD、AD.
(1)求拋物線的函數(shù)解析式以及頂點(diǎn)D的坐標(biāo);
(2)在拋物線上取一點(diǎn)P(不與點(diǎn)C重合)、并分別連接PA、PD,當(dāng)△PAD的面積與△ACD的面積相等時(shí),求點(diǎn)P的坐標(biāo):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com