(2009•西城區(qū)二模)如圖,正方形ABCD的邊長為4,E為CD的中點(diǎn),F(xiàn)為AD邊上一點(diǎn),且不與點(diǎn)D重合,AF=a,
(1)判斷四邊形BCEF的面積是否存在最大或者最小值?若存在,求出來;若不存在,說明理由;
(2)若∠BFE=∠FBC,求tan∠AFB的值;
(3)在(2)的條件下,若將“E是CD的中點(diǎn)”改為“CE=k•DE”,其中k為正整數(shù),其他條件不變,請直接寫出tan∠AFB的值(用k的代數(shù)式表示).

【答案】分析:(1)由于S四邊形BCEF=S正方形ABCD-S△ABF-S△DEF,用含a的代數(shù)式表示S四邊形BCEF=12-a,而0≤a<4,即S四邊形BCEF存在最大值12,S四邊形BCEF不存在最小值;
(2)延長BC,F(xiàn)E交于點(diǎn)P,構(gòu)造等腰三角形PEB,利用正方形的性質(zhì)和中點(diǎn)的性質(zhì)求得PB的長后,由勾股定理求得a的值.則可求出AB,AF的值.再用tan∠AFB=;求得tan∠AFB的值;
(3)用(2)的方法求得tan∠AFB的值.
解答:解:(1)如圖,連接BE,
S四邊形BCEF=S正方形ABCD-S△ABF-S△DEF=42-×4×a-×2×(4-a)=12-a,
∵F為AD邊上一點(diǎn),且不與點(diǎn)D重合,
∴0≤a<4,
∴當(dāng)點(diǎn)F與點(diǎn)A重合時(shí),a=0,S四邊形BCEF存在最大值12.
S四邊形BCEF不存在最小值.

(2)如圖,延長BC,F(xiàn)E交于點(diǎn)P,
∵正方形ABCD,
∴AD∥BC.
∴△DEF∽△CEP.
∵E為CD的中點(diǎn),
==1,PF=2EF.
∵∠BFE=∠FBC,
∴PB=PF.
∵AF=a,
∴PC=DF=4-a,PB=PF=8-a,
EF==
∵Rt△DEF中,EF2=DE2+DF2,
=22+(4-a)2整理,得3a2-16a+16=0,
解得,a1=,a2=4;
∵F點(diǎn)不與D點(diǎn)重合,
∴a=4不成立,a=,tan∠AFB==3.

(3)延長BC,F(xiàn)E交于點(diǎn)P,
∵四邊形ABCD是正方形,
∴AD∥BC,
∴△DEF∽△CEP.
∵CE=k•DE,
==,PF=(k+1)EF.
∵∠BFE=∠FBC,
∴PB=PF,
∵AF=a,
∴PC=(4-a)k,PB=PF=4+(4-a)k.
EF==
∵Rt△DEF中,EF2=DE2+DF2,
∴(2=(2+(4-a)2整理,
×=(4-a)2,
(k+1)2=
解得a=,
∴tan∠AFB==2k+1(k為正數(shù)).
點(diǎn)評:本題利用了正方形的性質(zhì),中點(diǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的面積公式,勾股定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•西城區(qū)二模)若分式
3x+6x-1
的值為0,則x的值為
-2
-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市建蘭中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2009•西城區(qū)二模)如圖,拋物線y=ax2+bx+c的頂點(diǎn)為A(0,1),與x軸的一個(gè)交點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)P在拋物線上,其橫坐標(biāo)為2n(0<n<1),作PC⊥x軸于C,PC交射線AB于點(diǎn)D
(1)求拋物線的解析式;
(2)用n的代數(shù)式表示CD、PD的長,并通過計(jì)算說明的大小關(guān)系;
(3)若將原題中“0<n<1”的條件改為“n>1”,其他條件不變,請通過計(jì)算說明(2)中結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市西城區(qū)抽樣測試初三數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•西城區(qū)二模)如圖,拋物線y=ax2+bx+c的頂點(diǎn)為A(0,1),與x軸的一個(gè)交點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)P在拋物線上,其橫坐標(biāo)為2n(0<n<1),作PC⊥x軸于C,PC交射線AB于點(diǎn)D
(1)求拋物線的解析式;
(2)用n的代數(shù)式表示CD、PD的長,并通過計(jì)算說明的大小關(guān)系;
(3)若將原題中“0<n<1”的條件改為“n>1”,其他條件不變,請通過計(jì)算說明(2)中結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市西城區(qū)抽樣測試初三數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•西城區(qū)二模)已知直線y=mx+n經(jīng)過拋物線y=ax2+bx+c的頂點(diǎn)P(1,7),與拋物線的另一個(gè)交點(diǎn)為M(0,6),求直線和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市西城區(qū)抽樣測試初三數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•西城區(qū)二模)如圖,矩形ABCD中,E、F點(diǎn)分別在BC、AD邊上,∠DAE=∠BCF,求證:△ABE≌△CDF.

查看答案和解析>>

同步練習(xí)冊答案