【題目】如圖,在平行四邊形中,點(diǎn)在邊上,,連接于點(diǎn),則的面積與四邊形的面積之比為___

【答案】

【解析】

DEEC=31,可得DFFB=34,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得SEFDSBEF=34,SBDESBEC=31,可求△DEF的面積與四邊形BCEF的面積的比值.

解:連接BE

DEEC=31
∴設(shè)DE=3k,EC=k,則CD=4k
ABCD是平行四邊形
ABCD,AB=CD=4k

,

SEFDSBEF=34
DEEC=31
SBDESBEC=31
設(shè)SBDE=3a,SBEC=a
SEFD=,,SBEF=,

SBCEF=SBEC+SBEF=,

∴則△DEF的面積與四邊形BCEF的面積之比919
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,過于點(diǎn),點(diǎn)分別為,上一點(diǎn),連接于點(diǎn),連接,

1)若,,求的長;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)ax2+bx+c的部分對應(yīng)值如表,利用二次的數(shù)的圖象可知,當(dāng)函數(shù)值y0時(shí),x的取值范圍是( 。

x

3

2

1

0

1

2

y

12

5

0

3

4

3

A.0x2B.x0x2C.1x3D.x<﹣1x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置,此時(shí)AC′的中點(diǎn)恰好與D點(diǎn)重合,AB′CD于點(diǎn)E.若AB=6,則AEC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過A-1,0)、C0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.

1)求此拋物線的解析式;

2)已知點(diǎn)D 在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D’的坐標(biāo);

3)在(2)的條件下,連結(jié)BD,問在x軸上是否存在點(diǎn)P,使,若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A與原點(diǎn)O重合,頂點(diǎn)B在直線l上,將正方形沿射線OB方向無滑動地翻滾.若直線,正方形邊長為2

1)翻滾后點(diǎn)A第一次落在直線l上的坐標(biāo)是_____;

2)當(dāng)正方形翻滾2002次點(diǎn)A對應(yīng)點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(2,0)B(0,﹣2),C(1,0)三點(diǎn).

1)求拋物線的解析式;

2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;

3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線y=﹣x上的動點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)PQ、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案