【題目】如圖a,有兩個(gè)全等的正三角形ABC和DEF,點(diǎn)D、C分別為△ABC、DEF的內(nèi)心;固定點(diǎn)D,將△DEF順時(shí)針旋轉(zhuǎn),使得DF經(jīng)過(guò)點(diǎn)C,如圖b,則圖a中四邊形CNDM與圖b中△CDM面積的比為(
A.2:1
B.2:
C.4:3
D.

【答案】C
【解析】解:如圖所示:連接MN、CD.
設(shè)MN的長(zhǎng)為a,CD= a,則四邊形CNDM的面積= MNCD= ×a× a= a2
∵∠DCM=30°,∠CDM=60°,
∴DM= DC= ,CM= a.
∴△CDM= DMCM= × × = a2
∴四邊形CNDM與圖b中△CDM面積的比=4:3.
故選;C.
連接MN、CD.由等三角形的性質(zhì)可知∠DCM=30°,設(shè)MN的長(zhǎng)為a,CD= a,由四邊形CNDM的面積= MNCD可求得四邊形CNDM的面積,然后在△DCM中,依據(jù)特殊銳角三角函數(shù)值可求得DM、CM的長(zhǎng),依據(jù)三角形的面積公式可求得△CDM的面積,從而可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,,,AD、BE相交于點(diǎn)M,連接CM
求證:;
的度數(shù)用含的式子表示;
如圖2,當(dāng)時(shí),點(diǎn)P、Q分別為AD、BE的中點(diǎn),分別連接CP、CQ、PQ,判斷的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)我中華中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:甲:8,7,98,8;乙:7,9,6,9,9,則下列說(shuō)法中錯(cuò)誤的是( )

A. 甲、乙得分的平均數(shù)都是8 B. 甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C. 甲得分的中位數(shù)是9,乙得分的中位數(shù)是6 D. 甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一小題計(jì)分.

若單項(xiàng)式﹣xmyn+4 5x2y 是同類項(xiàng),則 nm 的值為____.

實(shí)施西部大開(kāi)發(fā)戰(zhàn)略是黨中央的重大決策,我國(guó)國(guó)土面積約為960 萬(wàn)平方千米,而我國(guó)西部地區(qū)的面積占我國(guó)國(guó)土面積的 ,用科學(xué)記數(shù)法表示我國(guó)西部地區(qū)的面積約為_____平方千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人兩次同時(shí)在一家糧店購(gòu)買大米,兩次大米的價(jià)格分別為每千克a元和b元(a≠b).甲每次買100千克大米,乙每次買100元大米.

(1)用含a、b的代數(shù)式表示:甲兩次購(gòu)買大米共需付款   元,乙兩次共購(gòu)買   千克大米.若甲兩次購(gòu)買大米的平均單價(jià)為每千克Q1元,乙兩次購(gòu)買大米的平均單價(jià)為每千克Q2元.則:Q1=   ;Q2=   

(2)若規(guī)定誰(shuí)兩次購(gòu)糧的平均價(jià)格低,誰(shuí)購(gòu)糧的方式就更合理,請(qǐng)你判斷比較甲、乙兩人的購(gòu)糧方式,哪一個(gè)更合理,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三角形內(nèi)有n個(gè)點(diǎn),在這些點(diǎn)及三角形頂點(diǎn)之間用線段連接起來(lái),使得這些線段互不相交,且又能把原三角形分割為不重疊的小三角形.如圖:若三角形內(nèi)有1個(gè)點(diǎn)時(shí)此時(shí)有3個(gè)小三角形;若三角形內(nèi)有2個(gè)點(diǎn)時(shí),此時(shí)有5個(gè)小三角形.則當(dāng)三角形內(nèi)有3個(gè)點(diǎn)時(shí),此時(shí)有個(gè)小三角形;當(dāng)三角形內(nèi)有n個(gè)點(diǎn)時(shí),此時(shí)有個(gè)小三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展課外球類特色的體育活動(dòng),決定開(kāi)設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.

(1)樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;

(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校有學(xué)生3000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡足球的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運(yùn)算題:

計(jì)算:

她發(fā)現(xiàn),這個(gè)算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。

(1)前后兩部分之間存在著什么關(guān)系?

(2)先計(jì)算哪步分比較簡(jiǎn)便?并請(qǐng)計(jì)算比較簡(jiǎn)便的那部分。

(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。

(4)根據(jù)以上分析,求出原式的結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在ABCD中,E、F為對(duì)角線AC上的兩點(diǎn),且AE=CF,連接DE、BF,

(1)寫出圖中所有的全等三角形;

(2)求證:DEBF.

查看答案和解析>>

同步練習(xí)冊(cè)答案