【題目】中,,點(diǎn)D外一點(diǎn),點(diǎn)D與點(diǎn)C在直線的異側(cè),且點(diǎn)不共線,連接

1)如圖1,當(dāng)時(shí),畫出圖形,直接寫出之間的數(shù)量關(guān)系;

2)當(dāng)時(shí),利用圖2,繼續(xù)探究之間的數(shù)量關(guān)系并證明;

(提示:嘗試運(yùn)用圖形變換,將要研究的有關(guān)線段盡可能轉(zhuǎn)移到一個(gè)三角形中)

3)當(dāng)時(shí),進(jìn)一步探究之間的數(shù)量關(guān)系,并用含的等式直接表示出它們之間的關(guān)系.

【答案】1)圖形見解析,之間的數(shù)量關(guān)系是;(2;(3

【解析】

1)畫出圖形即可證得△ABC是等邊三角形,以BD為邊向外作等邊△BDE,利用SAS可證明△ABE≌△CBDAE=CD,運(yùn)用勾股定理即可的出答案;

2)過點(diǎn)A,且,利用勾股定理可得,利用SAS可證明,可得

運(yùn)用勾股定理在中,,即可得出答案;

3)以BD為底邊構(gòu)造等腰△BDE,使 ,連接AE,CD,過點(diǎn)AAHBC于點(diǎn)H,由兩邊成比例和它們的夾角相等可判定△ABC∽△EBD,故∠ABC=ACB=EBD=EDB,可得∠ADE=90°.

由△BED∽△BAC可得:,進(jìn)而證明△EBA∽△DBC,可得 有三角函數(shù)可得推出,利用勾股定理,將AE、DE代入 即可得出答案

解:(1

,AB=AC

∴∠ABC=ACB=BAC=60°

∴△ABC是等邊三角形

BD為邊向外作等邊△BDE連接AE,CD

∵△ABC,△BDE都是等邊三角形

BA=BC=AC,BD=BE=DE

ABC=DBE=60°

∴∠ABC+ABD=DBE+ABD

∴∠CBD=ABE

在△ABE和△CBD

∴△ABE≌△CBDSAS

AE=CD

∵∠ADB=30°,∠BDE=60°

∴∠ADE=ADB+BDE=90°

RtADE

故答案為:

2)如圖,過點(diǎn)A,且,連接

可得

,

,

中,

3)以BD為底邊構(gòu)造等腰△BDE

使 ,連接AE,CD

過點(diǎn)AAHBC于點(diǎn)H

AB=AC,BE=DE,∠BAC=BED=

∴△ABC∽△EBD

∴∠ABC=ACB=EBD=EDB

=

=

∴∠ADE=ADB+EDB=90°

∵△BED∽△BAC

∵∠EBD+ABD=ABC+ABD

∴∠EBA=DBC

∴△EBA∽△DBC

AB=AC,AHBC

同理

RtADE

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建“國家園林城市”,某校舉行了以“愛我黃石”為主題的圖片制作比賽,評委會(huì)對200名同學(xué)的參賽作品打分發(fā)現(xiàn),參賽者的成績x均滿足50x100,并制作了頻數(shù)分布直方圖,如圖.

根據(jù)以上信息,解答下列問題:

(1)請補(bǔ)全頻數(shù)分布直方圖;

(2)若依據(jù)成績,采取分層抽樣的方法,從參賽同學(xué)中抽40人參加圖片制作比賽總結(jié)大會(huì),則從成績80x90的選手中應(yīng)抽多少人?

(3)比賽共設(shè)一、二、三等獎(jiǎng),若只有25%的參賽同學(xué)能拿到一等獎(jiǎng),則一等獎(jiǎng)的分?jǐn)?shù)線是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,AD2,AB6,∠DAB60°E為邊CD上一點(diǎn).

1)尺規(guī)作圖:延長AE,過點(diǎn)C作射線AE的垂線,垂足為F(不寫作法,保留作圖痕跡);

2)當(dāng)點(diǎn)E在線段CD上(不與C,D重合)運(yùn)動(dòng)時(shí),求EFAE的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax28ax+6a0)的圖象與x軸分別交于AB兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D在拋物線的對稱軸上,且四邊形ABDC為平行四邊形.

1)求此拋物線的對稱軸,并確定此二次函數(shù)的表達(dá)式;

2)點(diǎn)Ex軸下方拋物線上一點(diǎn),若ODE的面積為12,求點(diǎn)E的坐標(biāo);

3)在(2)的條件下,設(shè)拋物線的頂點(diǎn)為M,點(diǎn)P是拋物線的對稱軸上一動(dòng)點(diǎn),連接PEEM,過點(diǎn)PPE的垂線交拋物線于點(diǎn)Q,當(dāng)∠PQE=∠EMP時(shí),求點(diǎn)Q到拋物線的對稱軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是作一個(gè)的尺規(guī)作圖過程.

已知:平面內(nèi)一點(diǎn)A

求作:,使得

作法:如圖,

①作射線;

②在射線取一點(diǎn)O,以O為圓心,長為半徑作圓,與射線相交于點(diǎn)C

③分別以為圓心,大于為半徑作弧,兩弧交于點(diǎn)D,作射線于點(diǎn)E;

④作射線

即為所求作的角.

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:

_____________

_____.(_____________)(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象與直線交于點(diǎn)

1)求k的值;

2)已知點(diǎn),過點(diǎn)P作垂直于x軸的直線,交直線于點(diǎn)B,交函數(shù)于點(diǎn)C

①當(dāng)時(shí),判斷線段的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線.將該拋物線在軸和軸下方的部分記作,將沿軸翻折記作,構(gòu)成的圖形記作.關(guān)于圖形,給出如下四個(gè)結(jié)論,其中錯(cuò)誤的是(

A.圖形恰好經(jīng)過4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

B.圖形上任意一點(diǎn)到原點(diǎn)的距離都不超過1

C.圖形的周長大于

D.圖形所圍成的區(qū)域的面積大于2且小于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分82015年是中國人民抗日戰(zhàn)爭暨世界反法西斯勝利70周年,93日全國各地將舉行有關(guān)紀(jì)念活動(dòng).為了解初中學(xué)生對二戰(zhàn)歷史的知曉情況,某初中課外興趣小組在本校學(xué)生中開展了專題調(diào)查活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)學(xué)生答題情況,將結(jié)果分為A、B、C、D四類,其中A類表示非常了解、B類表示比較了解C類表示基本了解、D類表示不太了解,調(diào)查的數(shù)據(jù)經(jīng)整理后形成下列尚未完成的條形統(tǒng)計(jì)圖(如圖和扇形統(tǒng)計(jì)圖(如圖

1在這次抽樣調(diào)查中,一共抽查了 名學(xué)生;

2請把圖中的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3的扇形統(tǒng)計(jì)圖中D類部分所對應(yīng)扇形的圓心角的度數(shù)為 °

4如果這所學(xué)校共有初中學(xué)生1500名,請你估算該校初中學(xué)生中對二戰(zhàn)歷史非常了解比較了解的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,以為直徑的經(jīng)過點(diǎn),連接,交于點(diǎn).

1)證明:

2)若,證明:的切線;

3)在(2)條件下,連接于點(diǎn),連接,若的直徑為,求的長.

查看答案和解析>>

同步練習(xí)冊答案