【題目】為了強化學(xué)生的環(huán)保意識,某校團委在全校舉辦了“保護環(huán)境,人人有責(zé)”知識競賽活動,初、高中根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊進行復(fù)賽,兩個隊學(xué)生的復(fù)賽成績(滿分10分)如圖所示:

1)根據(jù)圖示填寫下表:

平均分

中位數(shù)

眾數(shù)

方差

初中隊

8.5

0.7

高中隊

8.5

10

2)小明同學(xué)說:這次復(fù)賽我得了8分,在我們隊中排名屬中游偏下!小明是初中隊還是高中隊的學(xué)生?為什么?

3)結(jié)合兩隊成績的平均分、中位數(shù)和方差,分析哪個對的復(fù)賽成績較好.

【答案】18.5,8.5,8,1.6;(2)小明在初中隊,理由見解析;(3)初中隊的成績好些,理由見解析

【解析】

1)由條形圖得出初中隊和高中隊成績,再根據(jù)平均數(shù)、中位數(shù)、眾數(shù)及方差的概念求解可得;

2)根據(jù)中位數(shù)的意義求解可得;

3)從平均數(shù)、中位數(shù)及方差的意義求解可得.

1):(1)由條形統(tǒng)計圖知,初中隊成績?nèi)缦拢?/span>7.58、8.5、8.510,高中隊的成績?yōu)椋?/span>77.5、81010,
所以初中隊的平均分為,眾數(shù)為8.5
高中隊的中位數(shù)為8,方差為×[7-8.52+7.5-8.52+8-8.52+2×10-8.52]=1.6;
補全表格如下:

平均分

中位數(shù)

眾數(shù)

方差

初中隊

8.5

8.5

8.5

0.7

高中隊

8.5

8

10

1.6

2)小明在初中隊.

理由:根據(jù)(1)可知,初中、高中隊的中位數(shù)分別為8.5分和8分,

88.5,

∴小明在初中隊.

3)初中隊的成績好些.因為兩個隊的平均數(shù)相同,初中隊的中位數(shù)高,而且初中隊的方差小于高中隊的方差,所以在平均數(shù)相同的情況下中位數(shù)高、方差小的初中隊成績較好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點M.填空:

的值為   

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,的角平分線邊于

1)以邊上一點為圓心,過兩點作(不寫作法,保留作圖痕跡),再判斷直線的位置關(guān)系,并說明理由;

2)若(1)中的邊的另一個交點為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABCD的對稱中心,點A的坐標(biāo)為(2,-2),AB=5AB//x軸,反比例函數(shù)y=的圖象經(jīng)過點D,將ABCD沿y軸向下平移,使點C的對應(yīng)點C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為(  )

A.10B.18C.20D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mxm<0)交x軸于O,A兩點,頂點為點B

1)求△AOB的面積(用含m的代數(shù)式表示);

2)直線y=kx+bk0)過點B,且與拋物線交于另一點D(點D與點A不重合),交y軸于點C.過點CCEABx軸于點E

(ⅰ) 若∠OBA=90°,2<<3,求k的取值范圍;

(ⅱ) 求證:DEy軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abmam+b)(m為實數(shù));⑤4acb20.其中錯誤結(jié)論的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過A-1,0B4,0),C0,4)三點.

1)求拋物線的解析式及頂點D的坐標(biāo);

2)將(1)中的拋物線向下平移個長度單位,再向左平移h(h0)個長度單位,得到新拋物線.若新拋物線的頂點ABC內(nèi),求h的取值范圍;

3)點P為線段BC上的一動點(點P不與點B,C重合),過點Px軸的垂線交(1)中的拋物線于點Q,當(dāng)PQCABC相似時,求PQC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥店購進一批消毒液,計劃每瓶標(biāo)價100元,由于疫情得到有效控制,藥店決定對這批消毒液全部降價銷售,設(shè)每次降價的百分率相同,經(jīng)過連續(xù)兩次降價后,每瓶售價為81.

1)求每次降價的百分率.

2)若按標(biāo)價出售,每瓶能盈利100%,問第一次降價后銷售消毒液100瓶,第二次降價后至少需要銷售多少瓶,總利潤才能超過5000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,C90°,AC10,BC16.動點P以每秒3個單位的速度從點A開始向點C移動,直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動,且分別與CB,AB邊交于EF兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P移動到與點C重合時,點P和直線l同時停止運動.在移動過程中,將PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應(yīng)點M落在直線l上,點F的對應(yīng)點記為點N,連接BN,當(dāng)BNPE時,t的值為_____

查看答案和解析>>

同步練習(xí)冊答案