分析 (1)由平行線的性質(zhì)得出∠DBE=∠CFE,由中點(diǎn)的定義得出BE=CE,由ASA證明△BDE≌△CFE即可;
(2)先證明DE是△ABC的中位線,得出DE∥AC,證出四邊形BDCF是平行四邊形,得出AD=CF,證出CF=BD,得出四邊形BDCF是平行四邊形;再由等腰三角形的性質(zhì)得出CD⊥AB,即可得出結(jié)論.
解答 (1)證明:∵CF∥AB,
∴∠DBE=∠CFE,
∵E是BC的中點(diǎn),
∴BE=CE,
在△BDE和△CFE中,$\left\{\begin{array}{l}{∠DBE=∠CFE}&{\;}\\{BE=CE}&{\;}\\{∠BED=∠CEF}&{\;}\end{array}\right.$,
∴△BDE≌△CFE(ASA);
(2)解:當(dāng)BC=AC時(shí),四邊形BDCF是矩形,理由如下:
∵D、E分別是AB,BC的中點(diǎn)
∴DE是△ABC的中位線,
∴DE∥AC,又AF∥BC,
∴四邊形BDCF是平行四邊形,
∴AD=CF,
又BD=AD,
∴CF=BD,又CF∥BD,
∴四邊形BDCF是平行四邊形;
∵BC=AC,BD=AD,
∴CD⊥AB,即∠BDC=90°,
∴平行四邊形BDCF是矩形.
點(diǎn)評(píng) 本題考查了矩形的判定、三角形中位線定理、等腰三角形的性質(zhì)、平行四邊形的判定與性質(zhì);熟練掌握矩形的判定,證明四邊形是平行四邊形是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
a | b | |
a | a2 | ab |
-b | -ab | -b2 |
x2 | -2x | 4 | |
x | x3 | -2x2 | 4x |
+2 | 2x2 | -4x | 8 |
m2 | -3m | 9 | |
m | m3 | -3m2 | 9m |
+3 | 3m2 | -9m | 27 |
△ | △3 | ||
○ | ○3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com