【題目】股民小明上星期六買進某公司股票1000股,每股20元,下表為本周內(nèi)每日該股票的漲跌情況(單位.元)
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股 漲跌 | +4 | +4.5 | -1 | -2.5 | -5 | +2 |
(1)星期四收盤時,每股是多少元?
(2)本周內(nèi)每股最高價多少元?最低價多少元?
(3)已知小明買進股票時付了2%0的手續(xù)費,賣出時還需付成交額2%0的手續(xù)費和1%0的交易稅,如果小明在星期六收盤前將全部股票賣出,它的收益情況如何?(注:2%0=)
【答案】(1)星期四收盤時,每股是25元;(2)每股最高價是28.5元,最低價是每股20元;(3)如果小明在星期六收盤前將全部股票賣出,他的收益為1894元.
【解析】
(1)根據(jù)表格中該股票的漲跌情況計算即可;
(2)分析本周股票的上漲情況和下跌情況,然后進行計算即可得出最高價與最低價;
(3)根據(jù)賣出的交易額減去買進的交易額減去手續(xù)費,交易稅,可得答案.
解:(1)20+4+4.512.5=25(元)
答:星期四收盤時,每股是25元;
(2)因為周一、周二連續(xù)上漲且漲幅較大,周三、周四、周五連續(xù)下跌,周六僅上漲2元,
故每股最高價為:20+4+4.5=28.5(元),
最低價為:28.512.55=20(元),
答:本周內(nèi)每股最高價是28.5元,最低價是每股20元;
(3)周六收盤前股票價格為:20+4+4.512.55+2=22(元),
22×1000-20×1000-20×1000×-22×1000×()=1894(元),
答:如果小明在星期六收盤前將全部股票賣出,他的收益為1894元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(),將兩塊直角三角尺的直角頂點疊放在一起
①若,則__________;若,則___________.
②猜想與的度數(shù)有何特殊關(guān)系,并說明理由.
(2)如圖(),兩個同樣的三角尺銳角的頂點重合在一起,則與的度數(shù)有何關(guān)系?請說明理由.
(3)如圖(),已知,作(,都是銳角且),若在的內(nèi)部,請直接寫出與的度數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=為反比例函數(shù).
(1)求k的值;
(2)它的圖象在第 象限內(nèi),在各象限內(nèi),y隨x增大而 ;(填變化情況)
(3)求出﹣2≤x≤﹣時,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題:
(1)(-12.5)+20.5;
(2)2×(-);
(3)10+2÷×(-2);
(4)1-(1-0.5)××[2-(-2)2];
(5)-52+(-2)÷2;
(6)-22÷;
(7)17-23÷(-2)×3;
(8)2×(-5)+23-3÷;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為直線上一點,平分,.
(1)若,求和的度數(shù);
(2)猜想:是否平分?請直接寫出你猜想的結(jié)論;
(3)與互余的角有:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。
⑴該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。
⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉(zhuǎn)到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一批小玩具,每個成本價為20元,經(jīng)調(diào)查發(fā)現(xiàn)售價為32元時,每天可售出20個,若售價每增加5元,每天銷售量減少2個;售價每減少5元,每天銷售量增加2個,商店同一天內(nèi)售價保持不變.
(1)若售價增加元,則銷售量是(______________)個(用含的代數(shù)式表示);
(2)某日商店銷售該玩具的利潤為384元,求當(dāng)天的售價是多少元?(利潤=售價-進價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com