(1)證明:連接CD,由AC是直徑知CD⊥AB;
DE、CE都是切線,所以DE=CE,∠EDC=∠ECD;
又∠B+∠ECD=90°,∠BDE+∠EDC=90°;
所以∠B=∠BDE,所以BE=DE,從而BE=CE;
(2)解:連接OD,
當(dāng)以O(shè)、D、E、C為頂點的四邊形是正方形時,DE=EC=OC=OD=r;
從而BE=r,即△ABC是一個等腰直角三角形;
AC=AB=2r,S
△ABC=2r
2;
(3)解:若EC=4,BD=4
,則BC=8;
在Rt△BDC中,cos∠CBD=
=
;所以∠CBD=30°;
在Rt△ABC中,
=tan30°,即AC=BCtan30°=8×
=
,OC=
=
;
另解:設(shè)OC=r,AD=x;由EC=4,BD=4
得BC=8,DC=4;
則:
,解得
;即OC=
.
分析:(1)連接CD,由圓周角定理知CD⊥AB;由切線長定理知DE=DC,則∠EDC=∠ECD,此時發(fā)現(xiàn)∠EBD和∠EDB都是等角的余角,所以它們相等,由此可證得BE=DE;
(2)若四邊形ODCE是正方形,那么DE、BE、CE、OC的長都和半徑相等,即AC=BC=2r,已知了直角三角形的兩條直角邊,即可根據(jù)面積公式求得其面積;
(3)已知了BC(即2EC)、BD的長,可在Rt△BCD中求出∠BCD的度數(shù)和CD的長,進而可在Rt△ACD中求出AC的長,也就得到了⊙O的半徑.
(也可設(shè)出半徑和AD的長,利用切割線定理及勾股定理列方程組求解.)
點評:此題主要考查了圓周角定理、正方形的性質(zhì)、切線長定理及解直角三角形等知識的綜合應(yīng)用能力.