【題目】已知正方形的內(nèi)切圓O半徑為2,如圖,正方形的四個角上分別有一個直角三角形,如果直角三角形的第三邊與圓O相切且平行于對角線.則陰影部分的面積為( 。

A. 3232B. C. 1D. 16

【答案】A

【解析】

連接OAOB,作BI⊥OA于點I,作OM⊥AB于點M,求得△AOB的面積,則正八邊形的面積即可求得,然后減去圓的面積即可求解.

解:連接OA、OBJL、KM,作BI⊥OA于點I,作OM⊥AB于點M

GFKNBC,AHJLDE,

∴△JGF, KAH,CLB,END都是等腰直角三角形且全等,

∴∠HGF=GFE=FED=EDC=DCB=CBA=BAH=AHG=135°,

由切線長定理可知,GF=EF=DE=CD=BC=AB=AH=GH,

∴八邊形ABCDEFGH是正八邊形.

∠AOB= =45°,

∴△OBI是等腰直角三角形,

AM=BM=x,則OA=OB=OI=BI=,

,

,(舍去),

∴AB=,

SAOB=ABOM=××2=4-4

則正八邊形ABCDEFGH的面積是84-4=32-32

⊙O的面積是:,

則陰影部分的面積為:32-32-4π

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.

⑴ 求證:AB=AC.

⑵ 若BD=11,DE=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,BC,D四個小區(qū)進行檢查,并且每個小區(qū)不重復檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CGFE的頂點CD,E在同一條直線上,頂點B,CG在同一條直線上.OEG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FHEG于點M,連接OH.以下四個結論:GHBEEHM∽△GHF;12,其中正確的結論是( 。

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數(shù)據(jù):1.411.73,2.45

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD是⊙O的內(nèi)接正方形,延長BAE,使AE=AB,連接ED


1)求證:直線ED是⊙O的切線;
2)連接EOAD于點F,求證:EF=2FO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ADBC是⊙O的直徑,延長線段AC至點G,使AGAD,連接DG交⊙O于點E,EFABAG于點F

1)求證:EF與⊙O相切.

2)若EF2,AC4,求扇形OAC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,一次函數(shù)y=mx+nm≠0)和二次函數(shù)y=ax2+bx+ca≠0)的圖象交于A﹣3,0)和B兩點,拋物線與x軸交于A、C兩點,且C的橫坐標在01之間(不含端點),下列結論正確的是( )

A. abc0 B. 3a﹣b0 C. 2a﹣b+m0 D. a﹣b2m﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點OAB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E. F

(1)試判斷直線BC與⊙O的位置關系,并說明理由;

(2)BD=2,BF=2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案