【題目】如圖,已知拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn).若已知點(diǎn)的坐標(biāo)為.點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)為等腰三角形時(shí),點(diǎn)的坐標(biāo)為________.
【答案】,,
【解析】
首先求出拋物線解析式,然后利用配方法或利用公式x=-求出對(duì)稱軸方程,由此可設(shè)可設(shè)點(diǎn)Q(3,t),若△ACQ為等腰三角形,則有三種可能的情形,需要分類討論,逐一計(jì)算,避免漏解.
∵拋物線y=-x2+bx+4的圖象經(jīng)過(guò)點(diǎn)A(-2,0),
∴-×(-2)2+b×(-2)+4=0,
解得:b=,
∴拋物線解析式為 y=-x2+x+4,
又∵y=-x2+x+4=-(x-3)2+,
∴對(duì)稱軸方程為:x=3,
∴可設(shè)點(diǎn)Q(3,t),則可求得:
AC=,
AQ=,
CQ=.
i)當(dāng)AQ=CQ時(shí),
有=,
即25+t2=t2-8t+16+9,
解得t=0,
∴Q1(3,0);
ii)當(dāng)AC=AQ時(shí),
有=2,
即t2=-5,此方程無(wú)實(shí)數(shù)根,
∴此時(shí)△ACQ不能構(gòu)成等腰三角形;
iii)當(dāng)AC=CQ時(shí),
有2=,
整理得:t2-8t+5=0,
解得:t=4±,
∴點(diǎn)Q坐標(biāo)為:Q2(3,4+),Q3(3,4-).
綜上所述,存在點(diǎn)Q,使△ACQ為等腰三角形,點(diǎn)Q的坐標(biāo)為:Q1(3,0),Q2(3,4+),Q3(3,4-).
故答案為:(3,0),(3,4+),(3,4-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】胖娃、猴子兩人在1800米長(zhǎng)的直線道路上跑步,胖娃、猴子兩人同起點(diǎn)、同方向出發(fā),并分別以不同的速度勻速前進(jìn).已知,胖娃出發(fā)30秒后,猴子出發(fā),猴子到終點(diǎn)后立即返回,并以原來(lái)的速度前進(jìn),最后與胖娃相遇,此時(shí)跑步結(jié)束. 如圖,(米)表示胖娃、猴子兩人之間的距離,x(秒)表示胖娃出發(fā)的時(shí)間,圖中折線及數(shù)據(jù)表示整個(gè)跑步過(guò)程中y與x函數(shù)關(guān)系.那么,猴子到終點(diǎn)后_______秒與胖娃相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過(guò)點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫(xiě)出線段CK長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,且當(dāng)和時(shí)二次函數(shù)的函數(shù)值相等.
()求實(shí)數(shù)、的值.
()如圖,動(dòng)點(diǎn)、同時(shí)從點(diǎn)出發(fā),其中點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿邊向終點(diǎn)運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿射線方向運(yùn)動(dòng),當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.連接,將沿翻折,使點(diǎn)落在點(diǎn)處,得到.
①是否存在某一時(shí)刻,使得為直角三角形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
②設(shè)與重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,有一點(diǎn)P在AC上移動(dòng).若AB=AC=5,BC=6,AP+BP+CP的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,672可以寫(xiě)成6×102+7×10+2,對(duì)于多項(xiàng)式而言,關(guān)于某一字母的多項(xiàng)式都可以按這個(gè)字母的降冪排列比如7x+2+6x2可以寫(xiě)成6x2+7x+2.在解決多項(xiàng)式相除的問(wèn)題時(shí),我們通過(guò)對(duì)比發(fā)現(xiàn),可以類比多位數(shù)的除法,用豎式進(jìn)行計(jì)算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21計(jì)算如圖,因此:(7x+2+6x2)÷(2x+1)=3x+2.根據(jù)閱讀材料,
(1)試判斷:x3﹣x2﹣5x﹣3能否被x+1整除_____,(請(qǐng)用“能”或“不能”填空)
(2)多項(xiàng)式2x5+3x3+5x2﹣2x+10除以x2+1的商式是_____,余式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形的邊長(zhǎng)為,將其放置在如圖所示的平面直角坐標(biāo)系中,其中邊在軸上,邊的高在軸上.一只電子蟲(chóng)從出發(fā),先沿軸到達(dá)點(diǎn),再沿到達(dá)點(diǎn),已知電子蟲(chóng)在軸上運(yùn)動(dòng)的速度是在上運(yùn)動(dòng)速度的倍,若電子蟲(chóng)走完全程的時(shí)間最短,則點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是假命題的是( 。
A.在△ABC中,若∠B=∠C﹣∠A,則△ABC是直角三角形
B.在△ABC中,若a=(b+c) (b﹣c),則△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=3:4:5,則△ABC是直角三角形
D.在△ABC中,若a:b:c=3:4:5,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,在平面內(nèi),如果一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個(gè)圖形是旋轉(zhuǎn)對(duì)稱圖形,轉(zhuǎn)的這個(gè)角稱為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角.例如,正方形繞著它的對(duì)角線的交點(diǎn)旋轉(zhuǎn)后能與自身重合所以正方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.
判斷下列說(shuō)法是否正確(在相應(yīng)橫線里填上“對(duì)”或“錯(cuò)”)
①正五邊形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
②長(zhǎng)方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
填空:下列圖形中時(shí)旋轉(zhuǎn)對(duì)稱圖形,且有一個(gè)旋轉(zhuǎn)角為的是________.(寫(xiě)出所有正確結(jié)論的序號(hào))
①正三角形②正方形③正六邊形④正八邊形
寫(xiě)出兩個(gè)多邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,都有一個(gè)旋轉(zhuǎn)角為,其中一個(gè)是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;另一個(gè)既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com