【題目】如圖,已知直線軸交于點(diǎn),與反比例函數(shù)的圖象交于兩點(diǎn),的面積為.

1)求一次函數(shù)的解析式;

2)求點(diǎn)坐標(biāo)和反比例函數(shù)的解析式.

【答案】(1)(2);

【解析】

1)作AHy軸于H.根據(jù)△AOC的面積為2,求出OC,得到點(diǎn)C的坐標(biāo),代入y=2x+b即可結(jié)論;

2)把A、B的坐標(biāo)代入y=2x+2得:nm的值,進(jìn)而得到點(diǎn)B的坐標(biāo),即可得到反比例函數(shù)的解析式.

1)作AHy軸于H

A-2,n),

AH=2

∵△AOC的面積為2

OCAH=2

OC=2,

C0,2),把C0,2)代入y=2x+b中得:b=2

∴一次函數(shù)的解析式為y=2x+2

2)把A、B的坐標(biāo)代入y=2x+2得:n=-2m=1,

B14).

B1,4)代入中,k=4,

∴反比例函數(shù)的解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐:如圖△ABC是直角三角形,∠ACB90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)

1)作∠BAC的平分線,交BC于點(diǎn)O.

2)以O為圓心,OC為半徑作圓.

綜合運(yùn)用:在你所作的圖中,

1AB⊙O的位置關(guān)系是_____ .(直接寫出答案)

2)若AC=5,BC=12,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+a+2x+2a≠0)與x軸交于點(diǎn)A4,0)和點(diǎn)C,與y軸交于點(diǎn)B

1)求拋物線解析式和點(diǎn)B坐標(biāo);

2)在x軸上有一動(dòng)點(diǎn)Pm,0)過點(diǎn)Px軸的垂線交直線AB于點(diǎn)N,交拋物線與點(diǎn)M,當(dāng)點(diǎn)M位于第一象限圖象上,連接AM,BM,求△ABM面積的最大值及此時(shí)M點(diǎn)的坐標(biāo);

3)如圖2,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為D,連接AD,BC

①填空:點(diǎn)P是線段AC上一點(diǎn)(不與點(diǎn)AC重合),點(diǎn)Q是線段AB上一點(diǎn)(不與點(diǎn)A、B重合),則兩條線段之和PQ+BP的最小值為   

②填空:將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)aα180°),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C落在△ABD的邊所在直線上時(shí),則此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)B的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點(diǎn)上任意一點(diǎn),過點(diǎn)于點(diǎn),連接并延長交的延長線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的表達(dá)式是,它與兩坐標(biāo)軸分別交于CD兩點(diǎn),且∠OCD60,設(shè)點(diǎn)A的坐標(biāo)為(m,0),若以A為圓心,2為半徑的⊙A與直線l相交于M、N兩點(diǎn),當(dāng)MN=時(shí),m的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的表達(dá)式為y=ax2+4ax+4a-1a≠0),它的圖像的頂點(diǎn)為A,與x軸負(fù)半軸相交于點(diǎn)B、點(diǎn)C(點(diǎn)B在點(diǎn)C左側(cè)),與y軸交于點(diǎn)D,連接AO交拋物線于點(diǎn)E,且SAEC:SCEO=1:3.

1)求點(diǎn)A的坐標(biāo)和拋物線表達(dá)式;

2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得BDP的內(nèi)心也在對(duì)稱軸上,若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)連接BD,點(diǎn)Qy軸左側(cè)拋物線上的一點(diǎn),若以Q為圓心,為半徑的圓與直線BD相切,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A,C分別在x,y軸的正半軸上,已知點(diǎn)B(4,2),將矩形OABC翻折,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)P恰好落在線段OA(包括端點(diǎn)O,A)上,折痕所在直線分別交BCOA于點(diǎn)D、E;若點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),過點(diǎn)POA的垂線交折痕所在直線于點(diǎn)Q.設(shè)點(diǎn)Q的坐標(biāo)為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是一塊銳角三角形余料,邊BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QMBC上,其余兩個(gè)項(xiàng)點(diǎn)P,N分別在ABAC上.

1)當(dāng)矩形的邊PN=PQ時(shí),求此時(shí)矩形零件PQMN的面積;

2)求這個(gè)矩形零件PQMN面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案