【題目】如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長線交于P.下面結(jié)論:
①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.
請你把你認為正確的結(jié)論的番號都填上 (填錯一個該題得0分)
【答案】①②③.
【解析】
試題分析:∵∠DBC=45°,DE⊥BC,
∴△BDE為等腰直角三角形,
∴BE=DE,BD=BE,所以①正確;
∵BF⊥CD,
∴∠C+∠CBF=90°,
而∠BHE+∠CBF=90°,
∴∠BHE=∠C,
∵四邊形ABCD為平行四邊形,
∴∠A=∠C,
∴∠A=∠BHE,所以②正確;
在△BEH和△DEC中,
,
∴△BEH≌△DEC,
∴BH=CD
∵四邊形ABCD為平行四邊形,
∴AB=CD,
∴AB=BH,所以③正確;
∵AP∥BC,
∴∠ADP=∠DBC=45°,
∴∠BDP=135°,
∴∠P<45°,
而∠BDH=45°,
∴∠BDGP≠∠P,
∴△BHD與△BDP不相似,所以④錯誤;
∴正確的有①②③;
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分(△ABC以外的部分)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等腰直角三角形,∠ACB=90°,AB=8cm,動點P、Q以2cm/s的速度分別從點A、B同時出發(fā),點P沿A到B向終點B運動,點Q沿B到A向終點A運動,過點P作PD⊥AC于點D,以PD為邊向右側(cè)作正方形PDEF,過點Q作QG⊥AB,交折線BC﹣CA于點G與點C不重合,以QG為邊作等腰直角△QGH,且點G為直角頂點,點C、H始終在QG的同側(cè),設(shè)正方形PDEF與△QGH重疊部分圖形的面積為S(cm2),點P運動的時間為t(s)(0<t<4).
(1)當點F在邊QH上時,求t的值.
(2)點正方形PDEF與△QGH重疊部分圖形是四邊形時,求S與t之間的函數(shù)關(guān)系式;
(3)當FH所在的直線平行或垂直AB時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為5的菱形OABC中,sin∠AOC=,O為坐標原點,A點在x軸的正半軸上,B,C兩點都在第一象限.點P以每秒1個單位的速度沿O→A→B→C→O運動一周,設(shè)運動時間為t(秒).請解答下列問題:
(1)當CP⊥OA時,求t的值;
(2)當t<10時,求點P的坐標(結(jié)果用含t的代數(shù)式表示);
(3)以點P為圓心,以O(shè)P為半徑畫圓,當⊙P與菱形OABC的一邊所在直線相切時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明準備測量學校旗桿AB的高度,他發(fā)現(xiàn)陽光下,旗桿AB的影子恰好落在水平地面和斜坡的坡面上,測得水平地面上的影長BC=20m,斜坡坡面上的影長CD=8m,太陽光線AD與水平地面成銳角為26°,斜坡CD與水平地面所成的銳角為30°,求旗桿AB的高度(精確到1m).(參考數(shù)據(jù):sin26°=0.44,cos26°=0.90,tan26°=0.49)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 A、B是線段MN上的兩點,MN4,MA1,MB1.以A為中心順 時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,使MN 兩點重合成一點C,構(gòu)成△ABC,設(shè)ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.
C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列判斷中錯誤的是
A.圖象的對稱軸是直線x=1 B.當x>1時,y隨x的增大而減小
C.一元二次方程ax2+bx+c=0的兩個根是-1,3 D.當-1<x<3時,y<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC是⊙O的直徑,過點B作BE⊥AD,垂足為點E,AB平分∠CAE.
(1)判斷BE與⊙O的位置關(guān)系,并說明理由;
(2)若∠ACB=30°,⊙O的半徑為4,請求出圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com