【題目】計(jì)算:
(1)23﹣6×(﹣3)+2×(﹣4);
(2)﹣1.53×0.75﹣0.53×();
(3)﹣14+|3﹣5|﹣16÷(﹣2)×
(4)﹣14+×[2×(﹣6)﹣(﹣4)2].
【答案】(1)33;(2)﹣;(3)5;(4)-8
【解析】
(1)根據(jù)有理數(shù)的乘法和加減法可以解答本題;
(2)根據(jù)乘法分配律可以解答本題;
(3)根據(jù)有理數(shù)的乘方、有理數(shù)的乘除法和加減法可以解答本題;
(4)根據(jù)有理數(shù)的乘方、有理數(shù)的乘法和加減法可以解答本題.
解:(1)23﹣6×(﹣3)+2×(﹣4)
=23+18+(﹣8)
=33;
(2)﹣1.53×0.75﹣0.53×()
=﹣1.53×+0.53×
=(﹣1.53+0.53)×
=(﹣1)×
=﹣;
(3)﹣14+|3﹣5|﹣16÷(﹣2)×
=﹣1+2+16×
=﹣1+2+4
=5;
(4)﹣14+×[2×(﹣6)﹣(﹣4)2]
=﹣1+×(﹣12﹣16)
=﹣1+×(﹣28)
=﹣1+(﹣7)
=﹣8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB'C′;
(2)畫出△AB′C′向左平移4格后的△A′B″C″;
(3)計(jì)算線段AB在變換到AB′的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形OABC中,AB∥OC,∠OAB=90°, ∠OCB=60°,AB=2,OA=2.
(1)如圖①,連接OB,請直接寫出OB的長度;
(2)如圖②,過點(diǎn)O作OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長度,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△OPQ的面積為S(平方單位).
①求S與t之間的函數(shù)關(guān)系式;
②設(shè)PQ與OB交于點(diǎn)M,當(dāng)△OPM為等腰三角形時(shí),試求出△OPQ的面積S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,且經(jīng)過點(diǎn)(0,2).有下列結(jié)論:
①ac>0;②b2﹣4ac>0;③a+c<2﹣b;④a<﹣;⑤x=﹣5和x=7時(shí)函數(shù)值相等.
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類似乘方,我們把求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做“除方”如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,并將2÷2÷2記作2③,讀作“2的圈3次方”;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”.
(1)直接寫出結(jié)果:2③= ,(﹣3)④= ,()⑤= ,
(2)計(jì)算:24÷23+(﹣8)×2③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3.其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),過點(diǎn)C作CF∥AB交DE的延長線于點(diǎn)F,連接BE.
(1)求證:四邊形BCFD是平行四邊形.
(2)當(dāng)AB=BC時(shí),若BD=2,BE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線與軸、軸分別交于、兩點(diǎn),點(diǎn)是軸上一動(dòng)點(diǎn),要使點(diǎn)關(guān)于直線的對稱點(diǎn)剛好落在軸上,則此時(shí)點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com