【題目】現(xiàn)有多個全等直角三角形,先取三個拼成如圖1所示的形狀,為的中點,分別交,于,,易得.若取四個直角三角形拼成如圖2所示的形狀,為的中點,分別交,,于,,,則_________.
【答案】
【解析】
首先證明△BCQ∽△BES,從而可求得CQ=EF,DQ=EF,然后證明△BAP∽△QDR得到BP:QR=4:3從而可知:BP:PQ:QR=4:1:3,然后由DQ∥SE,可知:QR:RS=DQ:SE=3:2,從而可求得BP:PQ:QR:RS=4:1:3:2.
解:(1)∵四個直角三角形是全等三角形,
∴AB=EF=CD,AB∥EF∥CD,BC=CE,AC∥DE,
∴BP:PR=BC:CE=1,
∵CD∥EF,
∴△BCQ∽△BES.
又∵BC=CE
∴CQ=SE=EF,
∴DQ=EF,
∵AB∥CD,
∴∠ABP=∠DQR.
又∵∠BAP=∠QDR,
∴△BAP∽△QDR.
∴BP:QR=4:3.
∴BP:PQ:QR=4:1:3,
∵DQ∥SE,
∴QR:RS=DQ:SE=3:2,
∴BP:PQ:QR:RS=4:1:3:2.
故答案為:4:1:3:2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D是等邊△ABC內(nèi)一點,將線段AD繞著點A逆時針旋轉(zhuǎn)60°得到線段AE,連結(jié)CD并延長交AB于點F,連結(jié)BD,CE.
(1)求證:△ACE≌△ABD;
(2)當(dāng)CF⊥AB時,∠ADB=140°,求∠ECD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于點A(-3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
(3)點G是拋物線上的動點,點F在x軸上的動點,若以A,C,F,G四個點為頂點的四邊形是平行四邊形,求出所有滿足條件的點F坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,四邊形是矩形,是上的點,,與交于點,己知,的半徑為30.
(1)求的長.
(2)連接,若將扇形卷成一個圓錐,求這個圓錐底面半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“江山如此多嬌”為主題的地理知識競賽活動,要求每班派出一名同學(xué)代表本班參賽.九年一班四名同學(xué)主動報名,老師為了確定最終參賽人選,對這四名同學(xué)的歷次地理考試成績進(jìn)行了匯總,數(shù)據(jù)如下:
班級里數(shù)學(xué)小組的同學(xué)對上面的數(shù)據(jù)進(jìn)行了進(jìn)一步的整理:
根據(jù)以上的信息,回答下列問題:
(1)寫出上表中 , , .
(2)丙同學(xué)看到統(tǒng)計表,對老師說:“我的成績方差最小,說明我的成績最穩(wěn)定,應(yīng)該派我去參賽!”請問你是否同意他的觀點?若你是老師,你將派誰參賽?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市“上品”房地產(chǎn)開發(fā)公司于2010年5月份完工一商品房小區(qū),6月初開始銷售,其中6月的銷售單價為0.7萬元,7月的銷售單價為0.72萬元,且每月銷售價格(單位:萬元)與月份(,為整數(shù))之間滿足一次函數(shù)關(guān)系:每月的銷售面積為 (單位:),其中.(,為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個月的銷售額最高?最高銷售額為多少萬元?
(3)2010年11月時,因會受到即將實行的“國八條”和房產(chǎn)稅政策的影響,該公司銷售部預(yù)計12月份的銷售面積會在11月銷售面積基礎(chǔ)上減少,于是決定將12月份的銷售價格在11月的基礎(chǔ)上增加,該計劃順利完成.為了盡快收回資金,2011年月公司進(jìn)行降價促銷,該月銷售額為萬元.這樣12月、1月的銷售額共為4618.4萬元,請根據(jù)以上條件求出的值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com