【題目】如圖,在平面直角坐標(biāo)系中,正方形OBCD的頂點O在坐標(biāo)原點,點B的坐標(biāo)為(2,5),點A在第二象限,反比例函數(shù) 的圖象經(jīng)過點A,則k的值是( )
A.B.C.D.
【答案】D
【解析】
作AD⊥x軸于D,CE⊥x軸于E,先通過證得△AOD≌△OCE得出AD=OE,OD=CE,設(shè)A(x,),則C(,x),根據(jù)正方形的性質(zhì)求得對角線解得F的坐標(biāo),即可得出,解方程組求得k的值.
作AD⊥x軸于D,CE⊥x軸于E,
∵∠AOC=90,
∴∠AOD+∠COE=90,
∵∠AOD+∠OAD=90,
∴∠OAD=∠COE,
在△AOD和△OCE中,
,
∴△AOD≌△OCE(AAS),
∴AD=OE,OD=CE,
設(shè)A(x,),則C(,x),
∵AC和OB互相垂直平分,點B的坐標(biāo)為(2,5),
∴它們的交點F的坐標(biāo)為(1,),
∴,
解得,
∴k==,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,動點P按圖中箭頭所示方向從原點出發(fā),第1次運動到P1(1,1),第2次接著運動到點P2(2,0),第3次接著運動到點P3(3,-2),…,按這的運動規(guī)律,點P2019的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從①;②;③;④.這四個條件中選取兩個,使四邊形成為平行四邊形.下面不能說明是平行四邊形的是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為x=1,下列結(jié)論中錯誤的是( )
A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長是2,對角線AC、BD相交于點O,點E、F分別在邊AD、AB上,且,則四邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)所給信息,回答下列問題.
買一共要170元,
買一共要110元.
(1)分別求出桌子和椅子的單價是多少?
(2)學(xué)校根據(jù)實際情況,要求購買桌椅總費用不超過1000元,且購買桌子的數(shù)量是椅子數(shù)量的,求該校本次購買桌子和椅子共有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a∥b,直線AB與a,b分別相交于點A,B,AC⊥AB,AC交直線b于點C.
(1)若∠1=60°,求∠2的度數(shù);
(2)若AC=3,AB=4,BC=5,求a與b的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且點A1,A3,A5,A7,A9的坐標(biāo)分別為A1 (3,0),A3 (1,0),A5 (4,0),A7 (0.0),A9 (5.0),依據(jù)圖形所反映的規(guī)律,則A102的坐標(biāo)為( 。
A. (2,25)B. (2,26)C. (,﹣)D. (,﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+1與x、y 軸分別交于點A、B,在直線 AB上截取BB1=AB,過點B1分別作y 軸的垂線,垂足為點C1,得到⊿BB1C1;在直線 AB上截取B1B2= BB1,過點B2分別作y 軸的垂線,垂足為點C2,得到⊿BB2C2;在直線AB上截取B2B3= B1B2,過點B3作y 軸的垂線,垂足為點C3,得到⊿BB3C3;……;第3個⊿BB3C3的面積是___________;第n個⊿BBnCn的面積是______________(用含n的式子表示,n是正整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com