圖中的大、小正方形的邊長均為整數(shù)(cm),它們面積之和等于74cm2,則陰影三角形的面積等于________cm2

7
分析:根據(jù)大、小正方形的邊長均為整數(shù),它們面積之和等于74cm2,則可以分析求得兩個正方形的邊長分別是5cm和7cm,再進(jìn)一步求得陰影部分的面積即可.
解答:∵大、小正方形的邊長均為整數(shù)(cm),它們面積之和等于74cm2,
∴大正方形的邊長是7cm,小正方形的邊長是5cm,
∴陰影部分的面積=×(7-5)×7=7(cm2).
故答案為:7.
點評:此題主要是能夠根據(jù)已知條件把74分成兩個完全平方數(shù),即74=25+49.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠(yuǎn)處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠(yuǎn)?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠(yuǎn)處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠(yuǎn)?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)圖(1)是一個長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個正方形,請問:這兩個圖形的什么量不變所得的正方形的面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式可表示為______;
(2)由(1)的探索可得出的結(jié)論是:在周長一定的矩形中,______時,面積最大;
(3)若矩形的周長為24cm,則當(dāng)邊長為多少時,該圖形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省中考真題 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O,如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它以每秒1個單位長的速度由起始位置向外擴大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴大為8×8;再經(jīng)過一秒,由8×8擴大為10×10;……),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴大、再縮小,另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A→B→C→D→A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當(dāng)點Q與點B重合時,再向上平移,當(dāng)點M與點C重合時,再向右平移,當(dāng)點N與點D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動),正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設(shè)運動時間為x秒,它們的重疊部分面積為y個平方單位。
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式;
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少。


查看答案和解析>>

同步練習(xí)冊答案