【題目】已知,在中,,AD平分,點M是AC的中點,在AD上取點E,使得,EM與DC的延長線交于點F.
當時,求AE的長;求的大。
當時,探究與的數(shù)量關(guān)系.
【答案】(1)①;②;(2)
【解析】
(1)①先根據(jù)等腰直角三角形的性質(zhì)求出AD=AB=,根據(jù)線段中點的定義得出DE=AM=,再代入AE=AD-DE即可;
②連接DM,根據(jù)等腰直角三角形的性質(zhì)以及已知條件得出AD⊥BC,AD=DC,DM=MC=AM=DE,DM⊥AC,∠MDC=∠MDE=45°,利用三角形內(nèi)角和定理以及等邊對等角求出∠DEM=(180°-45°)=67.5°,那么∠F=90°-67.5°=22.5°;
(2)當∠BAC≠90°時,先根據(jù)等腰三角形的性質(zhì)得出∠ADC=90°.設(shè)∠BAC=4x,則∠DAC=2x.根據(jù)直角三角形斜邊中線的性質(zhì)得出DM=MC=AM=DE,利用三角形內(nèi)角和定理以及等邊對等角求出∠ADM=∠DAC=2x,∠DEM=(180°-2x)=90°-x,那么∠F=90°-DEM=90°-(90°-x)=x,從而得出∠BAC=4∠F.
解:當時,
;
連接DM.
,,AD平分,
,.
點M是AC的中點,
,,
,
,
;
當時,理由如下:
,AD平分,
.
設(shè),則.
點M是AC的中點,
,
,
,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD的對角線AC和BD相交于點E,AD=DC,DC2=DEDB,求證:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線L1、L2、L3,若L1與L2的距離為5,L2與L3的距離7,則正方形ABCD的面積等于( )
A.70B.74C.144D.148
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時刻,動點從點出發(fā)沿方向以的速度向點勻速運動;同時,動點從點出發(fā)沿方向以的速度向點勻速運動,問:
(1)經(jīng)過多少時間,的面積等于矩形面積的?
(2)是否存在時刻t,使以A,M,N為頂點的三角形與相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費 元
(3)求第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)分解因式 (直接寫出結(jié)果);若是整數(shù),則一定能被一個常數(shù)整除,這個常數(shù)的最大值是 .
(2)閱讀,并解決問題:
分解因式
解:設(shè),則原式
這樣的解題方法叫做“換元法”,即當復(fù)雜的多項式中,某一部分重復(fù)出現(xiàn)時,我們用字母將其替換,從而簡化這個多項式.換元法是一個重要的數(shù)學(xué)方法,不少問題能用換元法解決.請你用“換元法”對下列多項式進行因式分解:
①
②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班同學(xué)在慶祝2015年元旦晚會上進行抽獎活動.在一個不透明的口
袋中有三個完全相同的小球,把它們分別標號1、2、3.隨機摸出一個小球記下標號后放回搖勻,再從中隨
機摸出一個小球記下標號.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標號的所有結(jié)果;
(2)規(guī)定當兩次摸出的小球標號相同時中獎,求中獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=8cm,BC=6cm,P點在BC上,從B點到C點運動(不包括 C點),點 P運動的速度為1cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為2cm/s,若點 P、Q 分別從B、C 同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當 t 為何值時,P、Q 兩點的距離為 4cm?
(2)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最小?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個等腰直角三角板放在黑板上畫好了的平面直角坐標系內(nèi),如圖,已知直角頂點A的坐標為(0,1),另一個頂點B的坐標為(﹣5,5),則點C的坐標為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com