如圖,⊙O的內(nèi)接△ABC的外角∠ACE的平分線交⊙O于點(diǎn)D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個(gè)結(jié)論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④.其中一定成立的是( )

A.①②③
B.②③④
C.①③④
D.①②④
【答案】分析:①易證△CDE≌△CDF,得CE=CF;②∠ACB+∠ACE=180°,根據(jù)四邊形內(nèi)角和定理得∠ACE+∠EDF=180°,所以∠ACB=∠EDF;③沒理由證明DE是切線;④根據(jù)圓內(nèi)接四邊形的外角等于內(nèi)對(duì)角得∠DCE=∠DAB,所以∠DAB=∠DCA,根據(jù)圓周角定理判斷弧AD=弧BD.
解答:解:①∵∠DCE=∠DCF,∠DEC=∠DFC,DC=DC,
∴△CDE≌△CDF,得CE=CF.故成立;
②∠ACB+∠ACE=180°,根據(jù)四邊形內(nèi)角和定理得∠ACE+∠EDF=180°,所以∠ACB=∠EDF,故成立;
③連接OD、OC.則∠ODC=∠OCD.假如DE是切線,則OD⊥DE,因BE⊥DE,所以O(shè)D∥BE,∠DCE=∠ODC=∠OCD,而∠DCE=∠DCA,∠OCD≠∠DCA,故DE不是切線;
④根據(jù)圓內(nèi)接四邊形的外角等于內(nèi)對(duì)角得∠DCE=∠DAB,所以∠DAB=∠DCA,根據(jù)圓周角定理判斷弧AD=弧BD.故成立.
故選D.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)較多,綜合性較強(qiáng),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長(zhǎng)線于D,精英家教網(wǎng)OC交AB于E.
(1)求∠D的度數(shù);
(2)求證:AC2=AD•CE;
(3)求
BCCD
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的內(nèi)接△ABC的外角∠ACE的平分線交⊙O于點(diǎn)D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個(gè)結(jié)論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④
AD
=
BD
.其中一定成立的是(  )
A、①②③B、②③④
C、①③④D、①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的內(nèi)接多邊形周長(zhǎng)為3,⊙O的外切多邊形周長(zhǎng)為3.4,則下列各數(shù)中與此圓的周長(zhǎng)最接近的是( 。
A、
6
B、
8
C、
10
D、
17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=
34
,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0)與點(diǎn)(-2,6).
(1)求拋物線的函數(shù)解析式;
(2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D.求證:AD∥OB;
(3)動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng);點(diǎn)P的速度為每秒一個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠BAD=30°,AC=4,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案