若x=-2為一元二次方程x2-2x-m=0的一個根,則m的值為


  1. A.
    0
  2. B.
    4
  3. C.
    -3
  4. D.
    8
D
分析:根據(jù)一元二次方程的解的意義,將x=-2代入關(guān)于x的一元二次方程x2-2x-m =0,然后解關(guān)于m的一元一次方程即可.
解答:解:∵于x的一元二次方程x2-2x-m =0的一個解為-2,
∴4+4-m =0,即m =8,
故答案為:D
點評:本題考查的是一元二次方程的根即方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:課堂三級講練數(shù)學(xué)九年級(上) 題型:044

若關(guān)于x的一元二 次方程x2+(m+1)x+m+4=0的兩實根的平方和為2,求m的值.

解:設(shè)方程的兩根x1,x2,那么x1+x2=(m+1),x1·x2=m+4,

=(x1+x2)2-2x1x2=(m+1)2-2(m+4)=2.

即m2=9,解得m=3.

答:m的值是3.

請把上達解答過程的鉆誤或不完整之處,寫在橫線上,并給出正確解答.

答:錯誤或不完整之處有:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

已知關(guān)于x的一元二次為程ax2+x-a=0(a≠0).

(1)求證:對于任意非零實數(shù)a,該方程恒有兩個異號的實數(shù)根;

(2)設(shè)x1、x2是該方程的兩個根,若|x1|+|x2|=4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 滬科九年級版 2009-2010學(xué)年 第4期 總第160期 滬科版 題型:022

若關(guān)于x的一元二次方程ax2bxc0的兩個根為x1=-3x21,那么二次函數(shù)yax2bxc的圖象的對稱軸是直線________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設(shè)a<0,當(dāng)二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市西城區(qū)九年級一模數(shù)學(xué)卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設(shè)a<0,當(dāng)二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用

 

查看答案和解析>>

同步練習(xí)冊答案