如圖,在矩形ABCD中,AB=20cm,BC=4cm,點P從A開始沿折線A-B-C-D以4cm/s的速度移動,點Q從C開始沿CD邊以1cm/s的速度移動,如果點P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達D時,另一點也隨之停止運動.設(shè)運動時間為t(s).
(1)t為何值時,四邊形APQD為矩形;
(2)如圖,如果⊙P和⊙Q的半徑都是2cm,那么t為何值時,⊙P和⊙Q外切.
【答案】分析:(1)四邊形APQD為矩形,也就是AP=DQ,分別用含t的代數(shù)式表示,解即可;
(2)主要考慮有四種情況,一種是P在AB上,一種是P在BC上時.一種是P在CD上時,又分為兩種情況,一種是P在Q右側(cè),一種是P在Q左側(cè).并根據(jù)每一種情況,找出相等關(guān)系,解即可.
解答:解:(1)根據(jù)題意,當(dāng)AP=DQ時,四邊形APQD為矩形.此時,4t=20-t,解得t=4(s).
答:t為4時,四邊形APQD為矩形;

(2)當(dāng)PQ=4時,⊙P與⊙Q外切.
①如果點P在AB上運動.只有當(dāng)四邊形APQD為矩形時,PQ=4.由(1),得t=4(s);
②如果點P在BC上運動.此時t≥5,則CQ≥5,PQ≥CQ≥5>4,∴⊙P與⊙Q外離;
③如果點P在CD上運動,且點P在點Q的右側(cè).可得CQ=t,CP=4t-24.當(dāng)CQ-CP=4時,⊙P與⊙Q外切.此時,t-(4t-24)=4,解得;
④如果點P在CD上運動,且點P在點Q的左側(cè).當(dāng)CP-CQ=4時,⊙P與⊙Q外切.此時,4t-24-t=4,
解得,
∵點P從A開始沿折線A-B-C-D移動到D需要11s,點Q從C開始沿CD邊移動到D需要20s,而,
∴當(dāng)t為4s,,時,⊙P與⊙Q外切.
點評:考慮兩圓外切時,要注意兩圓的圓心距等于兩圓的半徑之和,大于的話就說明外離,小于的話就說明相交;還有要注意求出的t的值不能超過兩點運動到D點的最小值,否則就不存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案