【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B、M兩點(diǎn)的⊙O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
【答案】(1)證明見(jiàn)解析(2)4.8
【解析】
試題分析:(1)連接OM.根據(jù)OB=OM,得∠1=∠3,結(jié)合BM平分∠ABC交AE于點(diǎn)M,得∠1=∠2,則OM∥BE;根據(jù)等腰三角形三線合一的性質(zhì),得AE⊥BC,則OM⊥AE,從而證明結(jié)論;
(2)設(shè)圓的半徑是r.根據(jù)等腰三角形三線合一的性質(zhì),得BE=CE=3,再根據(jù)解直角三角形的知識(shí)求得AB=12,則OA=12﹣r,從而根據(jù)平行線分線段成比例定理求解.
試題解析:(1)連接OM.
∵OB=OM,
∴∠1=∠3,
又BM平分∠ABC交AE于點(diǎn)M,
∴∠1=∠2,
∴∠2=∠3,
∴OM∥BE.
∵AB=AC,AE是角平分線,
∴AE⊥BC,
∴OM⊥AE,
∴AE與⊙O相切;
(2)設(shè)圓的半徑是r.
∵AB=AC,AE是角平分線,
∴BE=CE=3,∠ABC=∠C,
又cosC=,
∴AB=BE÷cosB=12,則OA=12﹣r.
∵OM∥BE,
∴,
即,
解得r=2.4.
則圓的直徑是4.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)A種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)用含x的代數(shù)式表示該玩具的銷售量.
(2)若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于450件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?
(3)該商場(chǎng)計(jì)劃將(2)中所得的利潤(rùn)的一部分資金采購(gòu)一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場(chǎng)調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉(cāng)庫(kù)保管費(fèi)350元,請(qǐng)問(wèn)商場(chǎng)如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面有4張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)都是1,請(qǐng)?jiān)诜礁窦堉蟹謩e畫出符合要求的圖形,所畫圖形各頂點(diǎn)必須與方格紙中小正方形的頂點(diǎn)重合,具體要求如下:
(1)畫一個(gè)直角邊長(zhǎng)為4,面積為6的直角三角形.
(2)畫一個(gè)底邊長(zhǎng)為4,面積為8的等腰三角形.
(3)畫一個(gè)面積為5的等腰直角三角形.
(4)畫一個(gè)邊長(zhǎng)為2,面積為6的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置5個(gè)正方形,點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O﹦60,B1C1∥B2C2∥B3C3,則點(diǎn)A3到x軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F為BD所在直線上的兩點(diǎn),若AE=,∠EAF=135°,則下列結(jié)論正確的是( 。
A. DE=1B. tan∠AFO=C. AF=D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為1,延長(zhǎng)C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長(zhǎng)C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點(diǎn)A,D2,D3…,D10都在同一直線上,則正方形A2C2C3D3的邊長(zhǎng)是___,正方形AnnCn+1Dn+1的邊長(zhǎng)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知正方形ABCD的邊長(zhǎng)為4, P是對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長(zhǎng)為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號(hào)為( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P垂直于AC的直
線交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則
y關(guān)于x的函數(shù)圖象大致形狀是【 】
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com