【題目】中,.設的面積為.
①圖1中,為中點,,,,是上的四點;
②圖2中,,,,,,,交于點;
③圖3中,,D為中點,.
其中,陰影部分面積為的是______(填序號).
【答案】①②③.
【解析】
由等腰三角形的性質(zhì)可判斷①,由等邊三角形的性質(zhì)可判斷②,由ASA可證△ADF≌△DBE,可得S△ADF=S△DBE,即可判斷③.
如圖1,∵AB=AC,點D是BC中點,
∴BD=CD,AD垂直平分BC,
∴S△BDN=S△DCN,S△BMN=S△MNC,S△BFM=S△CFM,S△EFB=S△EFC,S△AEB=S△AEC,
∴陰影部分面積為S;
如圖2,∵AB=AC,∠BAC=60°,
∴△ABC是等邊三角形,且AD⊥BC,BE⊥AC,CF⊥AB,
∴AD垂直平分BC,BE垂直平分AC,CF垂直平分AB,
∴S△BDO=S△CDO,S△AEO=S△CEO,S△AFO=S△BFO,
∴陰影部分面積為S;
如圖3,連接AD,
∵AB=AC,∠BAC=90°,D為BC中點,
∴AD=BD,∠B=∠DAC=45°,AD⊥BC,
∴∠ADM+∠BDM=90°,且∠MDA+∠ADN=90°,
∴∠BDM=∠ADN,且AD=BD,∠B=∠DAC=45°,
∴△ADF≌△DBE(ASA)
∴S△ADF=S△DBE,
∴陰影部分面積為S;
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,請寫出圖中兩對“等角三角形”.
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°。求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,若△ACD是等腰三角形,請直接寫出∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測儀,AD=24m,∠D=90°,一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.
(Ⅰ)求B,C兩點間的距離(結果精確到1m);
(Ⅱ)若規(guī)定該路段的速度不得超過15m/s,判斷此轎車是否超速.
參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰中,,于.的平分線分別交,于點,兩點,為的中點,延長交于點,連接.下列結論:①;②;③是等腰三角形;④.其中正確的結論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連結AG,EC.
(1)說出AG與CE的大小關系;
(2)圖中是否存在通過旋轉(zhuǎn)能夠相互重合的兩個三角形?若存在,請詳細寫出旋轉(zhuǎn)過程;若不存在,請說明理由.
(3)請你延長AG交CE于點M,判斷AM與CE的位置關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線a,b,c分別通過A、D、C三點,且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( )
A.70B.74C.144D.148
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com