【題目】在平行四邊形ABCD中,在平行四邊形內(nèi)作以線段AD為邊的等邊ADM,連結(jié)AM

1)如圖1,若點M在對角線BD上,且∠ABC=105°,AB=,求AM的長;

2)如圖2,點ECD邊上一點,連接ME,點FBM的中點,,若CEME=DE.求證:BMME

【答案】122)見解析

【解析】

1)過點AAHBDH,根據(jù)∠ABC=105°和等邊三角形、平行四邊形的性質(zhì)得到△ABH為等腰直角三角形,求出AH,再得到AD的長,即可求出AM的長;

2)在ED上取點G,使得CGBM,連接EB,EG.證明△MEC≌△MGDSAS),△EMG是等邊三角形,再得到CFME即可解決問題.

1)過點AAHBDH,

△ADM等邊三角形,

∠ADM=60°,∠DAH=30°

∵四邊形ABCD是平行四邊形,

∠CBD=∠ADM=60°

∠ABC=105°,

∴∠ABD=∠ABC -∠CBD=45°

△ABH為等腰直角三角形

Rt△ABH中,AH2BH2AB2,即2AH218,

AH=3,

RtADH中,∠DAH=30°,

AD2DH,DH2AH2AD2,即(232AD2,

AD2,

AMAD2;

2)如圖,在ED上取點G,使得DGCE,連接CM,MG

FBM的中點,CFBM,

BCCM,

△BCM是等腰三角形,

CFBM

∴∠3=∠4,

∵四邊形ABCD是平行四邊形,

BCADBCAD,

∵△ADM是等邊三角形,

DMAD,∠ADM60,

BCCM,BCAD,

CMDM,

∴∠1=∠2,

CEDG

∴△MEC≌△MGDSAS),

EMMG,

CEME=DE,CG=DE

CEME=CG= CEEG

ME= EG

EMMG= EG

△EMG是等邊三角形

∴∠MEG60

BCAD

∴∠BCD+∠ADC180,即∠ADM+∠1+∠2+∠3+∠4180

∵∠1=∠2,∠3=∠4,∠ADM60,

∴∠2+∠360°,即∠FCG60

∴∠MEG=∠FCG60,

CFEM,

CFBM

BM⊥ME

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐角系中,點是原點,點、在坐標(biāo)軸上,連接,,點軸上,且點是線段的垂直平分線上一點.

1)求點的坐標(biāo);

2)點從點出發(fā)以每秒2個單位長度的速度向終點運動(點不與點重合),連接,若點的運動時間為秒,的面積為,用含的式子表示;

3)在(2)的條件下,過點垂直軸,交,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點G.

求證:(1)DG⊥AG;

(2)AG+CG=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長為6,∠A=60°.取菱形各邊中點并順次連接這四個點,得到四邊形,再取四邊形各邊中點,順次連接得到四邊形……以此類推,則四邊形的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商店銷售一批運動鞋,零售價每雙240元.如果一次購買超過10雙,那么每多購1雙,所購運動鞋單價降低6元,但單價不能低于150元.若該顧客購買了x雙(x>10)這批運動鞋.

(1)設(shè)每雙運動鞋的價格為y元,求y與x的函數(shù)關(guān)系式;

(2)若該顧客購買這種運動鞋支付了3600元,則該顧客買了多少雙運動鞋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,在同一平面內(nèi),將繞點旋轉(zhuǎn)到的位置,使得,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,邊上的中點,點分別在、邊上運動,且保持,連接、.在此運動變化的過程中,下列結(jié)論:①是等腰直角三角形;②四邊形不可能為正方形;③;④四邊形的面積保持不變;⑤面積最大值為8,其中正確的結(jié)論是___________(填番號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.

(1)該幾何體最少需要幾塊小正方體?

(2)最多可以有幾塊小正方體?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,D是邊AC的中點,連接BD,ECBC于點C,CEBD.求證:△ADE是等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案