【題目】如圖,矩形ABCD中,點E,F,G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為_______cm2.
【答案】8.
【解析】
試題先連接AP,CP.把該四邊形分解為三角形進行解答.設△AHP在AH邊上的高為x,△AEP在AE邊上的高為y.得出AH=CF,AE=CG.然后得出S四邊形AEPH=S△AHP+S△AEP.根據(jù)題意可求解.
連接AP,CP,設△AHP在AH邊上的高為x,△AEP在AE邊上的高為y.
則△CFP在CF邊上的高為4-x,△CGP在CG邊上的高為6-y.
∵AH=CF=2,AE=CG=3,
∴S四邊形AEPH=S△AHP+S△AEP,
=AH×x×+AE×y×=2x×+3y×=5,
2x+3y=10,
S四邊形PFCG=S△CGP+S△CFP=CF×(4-x)×+CG×(6-y)×=2(4-x)×+3(6-y)×
=(26-2x-3y)×=(26-10)×=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線OD交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC度數(shù)為( ).
A. 108° B. 135° C. 144° D. 160°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點E為蹦極項目的起跳點.已知點E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點E的仰角α=45°,從點C沿CB方向前行40米到達D點,在D處測得塔尖A的仰角β=60°,求點E離地面的高度EF.(結果精確到1米,參考數(shù)據(jù) ≈1.4, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣4,﹣3,1,3,4這五個數(shù)中,隨機抽取一個數(shù),記為m,若m使得關于x,y的二元一次方程組 有解,且使關于x的分式方程 ﹣1= 有正數(shù)解,那么這五個數(shù)中所有滿足條件的m的值之和是( )
A.1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B=50°,P 為 AB 中點,點 M 為射線 AC 上(不與點 A 重合)的任意一點,連接 MP, 并使MP 的延長線交射線BD 于點N,設∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當 MN=2BN 時,求α的度數(shù);
(3)若△BPN 為銳角三角形時,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC 中,∠CAB=90°,AC=AB,點 D、E 是 BC 上的兩點,且∠DAE=45°,△ADC 與△ADF 關于直線AD 對稱.
(1)求證:△AEF≌△AEB;
(2)求∠DFE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線MN與x軸、y軸分別相交于B、A兩點,OA,OB的長滿足式子
(1)求A,B兩點的坐標;
(2)若點O到AB的距離為,求線段AB的長;
(3)在(2)的條件下,x軸上是否存在點P,使ΔABP使以AB為腰的等腰三角形,若存在請直接寫出滿足條件的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com