【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線OD交于點(diǎn)O,將∠C沿EF(EBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC度數(shù)為( ).

A. 108° B. 135° C. 144° D. 160°

【答案】A

【解析】

連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點(diǎn)O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理列式計(jì)算即可得解.

解:如圖,連接OB、OC,

∵∠BAC=54°,AO為∠BAC的平分線,
∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-54°)=63°,
∵DO是AB的垂直平分線,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC-∠ABO=63°-27°=36°,
∵AO為∠BAC的平分線,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴點(diǎn)O在BC的垂直平分線上,
又∵DO是AB的垂直平分線,
∴點(diǎn)O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C在同一直線上,△ABD△BCE都是等邊三角形,AE,CD分別與BD,BE交于點(diǎn)F,G,連接FG,有如下結(jié)論:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正確的結(jié)論有__________________. (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù):

如圖,在上面的數(shù)據(jù)中,用一個長方形圈出同一列的三個數(shù),這列的第一個數(shù)表示為,其余各數(shù)分別用a、表示:

(1)若這三個數(shù)分別在這三行數(shù)的第,請用含的式子分別表示的值;

(2)記為這三個數(shù)的和(結(jié)果用含的式子表示并化簡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若mn>0,則一次函數(shù)y=mx+n與反比例函數(shù)y=在同一坐標(biāo)系中的大致圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面內(nèi)的∠M和∠N,若存在一個常數(shù)k0,使得∠MkN360°,則稱∠N為∠Mk系補(bǔ)周角.如若∠M90°,∠N45°,則∠N為∠M6系補(bǔ)周角.

1)若∠H120°,則∠H4系補(bǔ)周角的度數(shù)為 ;

2)在平面內(nèi)ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),連接BE,DE

①如圖1,∠D60°,若∠B是∠E3系補(bǔ)周角,求∠B的度數(shù);

②如圖2,∠ABE和∠CDE均為鈍角,點(diǎn)F在點(diǎn)E的右側(cè),且滿足∠ABF=nABE,∠CDF=nCDE(其中n為常數(shù)且n1),點(diǎn)P是∠ABE角平分線BG上的一個動點(diǎn),在P點(diǎn)運(yùn)動過程中,請你確定一個點(diǎn)P的位置,使得∠BPD是∠Fk系補(bǔ)周角,并直接寫出此時的k值(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△AB C沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個實(shí)數(shù)根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,BAD=∠BCD=90°,AB=AD,若四邊形ABCD的面積是24cm2,求AC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F,G,H分別在邊AB,BC,CDDA上,點(diǎn)P在矩形ABCD內(nèi).若AB4cm,BC6cm,AECG3cm,BFDH4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為_______cm2

查看答案和解析>>

同步練習(xí)冊答案