【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

【答案】1證明見解析;2

【解析】

試題分析:1首先設(shè)m==n×n,根據(jù)m、n均為正整數(shù),從而得出Fm的值;2首先根據(jù)題意得出10y+x-10x+y=18,即y=x+2,從而得出所有t可能出現(xiàn)的值,然后分別求出Ft的值,從而得出最大值.

試題解析:1設(shè)m==n×n,其中m和n均為正整數(shù),所以Fm=.

2由題意得,10y+x-10x+y=18,即y=x+2,所以t可能的值為13,24,35,46,57,68,79,

當(dāng)t=13時(shí),F(xiàn)t=, 當(dāng)t=24時(shí),F(xiàn)t=, 當(dāng)t=35時(shí),F(xiàn)t=,

當(dāng)t=46時(shí),F(xiàn)t=, 當(dāng)t=57時(shí),F(xiàn)t= 當(dāng)t=68時(shí),F(xiàn)t=,

當(dāng)t=79時(shí),F(xiàn)t=,

所以Ft的最大值為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】口袋里裝有五個(gè)大小形狀都相同,所標(biāo)數(shù)字不同的小球,小球所標(biāo)的數(shù)字分別是 -3,-2.5,-1,2,3,先隨機(jī)抽取一個(gè)球得到的數(shù)字記為k,放回后再抽一個(gè)球得到的數(shù)字記為b ,則滿足條件關(guān)于x的一次函數(shù)的圖象不經(jīng)過第四象限的概率是_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC=5,BC=8,點(diǎn)P是BC邊上的動(dòng)點(diǎn),過點(diǎn)P作PD⊥AB于點(diǎn)D,PE⊥AC于點(diǎn)E,則PD+PE的長是(
A.4.8
B.4.8或3.8
C.3.8
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)節(jié)能低碳的生活,某公司對(duì)集體宿舍用電收費(fèi)作如下規(guī)定:一間宿舍一個(gè)月用電量不超過a千瓦時(shí),則一個(gè)月的電費(fèi)為20元;若超過a千瓦時(shí),則除了交20元外,超過部分每千瓦時(shí)要交元。某宿舍3月份用電80千瓦時(shí),交電費(fèi)35元;4月份用電45千瓦時(shí),交電費(fèi)20元。

(1)求a的值;

(2)若該宿舍5月份交電費(fèi)45元,那么該宿舍當(dāng)月用電量為多少千瓦時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,0),B(0,4),C(﹣3,2).

(1)如圖1,求△ABC的面積.
(2)若點(diǎn)P的坐標(biāo)為(m,0),
①請(qǐng)直接寫出線段AP的長(用含m的式子表示);
②當(dāng)SPAB=2SABC時(shí),求m的值.
(3)如圖2,若AC交y軸于點(diǎn)D,直接寫出點(diǎn)D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)徐州旅游大數(shù)據(jù)分析系統(tǒng)顯示,去年1-11月,我市接待外省、外市游客總量為6292萬人次,同比增長4315%.?dāng)?shù)6292萬用科學(xué)記數(shù)法表示為( 。

A. 6292×104B. 6.292×103C. 62.92×106D. 6.292×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題
(1)請(qǐng)直接寫出a、b、c的值.a(chǎn)= , b= , c=
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為易動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡式子:|x+1|﹣|x﹣1|+2|x+5|(請(qǐng)寫出化簡過程)

(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和5個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案