【題目】△ABC中,AB=AC=5,BC=8,點(diǎn)P是BC邊上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,PE⊥AC于點(diǎn)E,則PD+PE的長(zhǎng)是( )
A.4.8
B.4.8或3.8
C.3.8
D.5
【答案】A
【解析】解:過(guò)A點(diǎn)作AF⊥BC于F,連結(jié)AP,
∵△ABC中,AB=AC=5,BC=8,
∴BF=4,
∴△ABF中,AF= =3,
∴ ×8×3= ×5×PD+ ×5×PE,
12= ×5×(PD+PE)
PD+PE=4.8.
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①矩形、②菱形、③正方形、④平行四邊形中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的有 ________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別是BC、CD邊上的點(diǎn),且∠EAF=45°,對(duì)角線BD交AE于點(diǎn)M,交AF于點(diǎn)N.若AB=4,BM=2,則MN的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱(chēng)正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1.
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱(chēng)這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BOC=9°,點(diǎn)A在OB上,且OA=1,按下列要求畫(huà)圖: 以A為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A1 , 得第1條線段AA1;
再以A1為圓心,1為半徑向右畫(huà)弧交OB于點(diǎn)A2 , 得第2條線段A1A2;
再以A2為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A3 , 得第3條線段A2A3;…
這樣畫(huà)下去,直到得第n條線段,之后就不能再畫(huà)出符合要求的線段了,則n=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明過(guò)程:
已知:如圖,∠D=123°,∠EFD=57°,∠1=∠2
求證:∠3=∠B
證明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥()
又∵∠1=∠2(已知)
∴∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
∴EF∥()
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com