【題目】已知一個(gè)兩位數(shù),用表示十位上的數(shù),用表示個(gè)位上的數(shù).
(1)用含,的式子表示這個(gè)兩位數(shù);
(2)把這個(gè)兩位數(shù)個(gè)位上的數(shù)字與十位上的數(shù)字交換位置,得到一個(gè)新的兩位數(shù).
①若原數(shù)個(gè)位上的數(shù)是十位上的數(shù)的3倍,且新數(shù)與原數(shù)的差是36,求原來的兩位數(shù)是多少?
②列式表示所得新數(shù)的平方與原數(shù)的平方的差(結(jié)果要化簡),并判斷其是11的倍數(shù)嗎?
【答案】(1)這個(gè)兩位數(shù)為10a+b;(2)①原來的兩位數(shù)是26;②(10b+a)2-(10a+b)2=99(b2-a2);該差是11的倍數(shù).
【解析】
(1)將十位數(shù)字乘以10,再加上個(gè)位數(shù)字可得;
(2)①根據(jù)題意列出關(guān)于a、b的方程組,解之可得;
② 根據(jù)題意列出代數(shù)式,并進(jìn)行因式分解則問題可解.
解:(1)由題意,這個(gè)兩位數(shù)為10a+b;
(2)①新兩位數(shù)為10b+a,根據(jù)題意,得:
解得,
故原來的兩位數(shù)是26;
②(10b+a)2-(10a+b)2=99(b2-a2);
99(b2-a2)=9×11×(b2-a2)
則兩數(shù)的差是11的倍數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E,F分別為OB,OD的中點(diǎn),延長AE至G,使EG=AE,連接CG.
(1)求證:△ABE≌△CDF;
(2)當(dāng)AB與AC滿足什么數(shù)量關(guān)系時(shí),四邊形EGCF是矩形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為5的正方形 的頂點(diǎn)在坐標(biāo)原點(diǎn)處,點(diǎn)分別在軸、軸的正半軸上,點(diǎn)是邊上的點(diǎn)(不與點(diǎn)重合),且與正方形外角平分線交于點(diǎn).
(1)求證:;
(2)若點(diǎn)坐標(biāo)為時(shí),①在軸上是否存在點(diǎn),使得四邊形是平行四邊形?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
②在平面內(nèi)是否存在點(diǎn),使四邊形為正方形,若存在,請(qǐng)直接寫出點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(不包括線段的端點(diǎn)).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得:的值為常數(shù)t,則t=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某中學(xué)學(xué)生的身高情況,隨機(jī)對(duì)該校男、女生的身高進(jìn)行抽樣調(diào)查.抽取的樣本中,男、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如圖所示的統(tǒng)計(jì)圖表.
組別 | 男女生身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表中提供的信息,回答下列問題:
(1)在樣本中,男生身高的中位數(shù)落在__________組(填組別序號(hào)),女生身高在B組的有__________人;
(2)在樣本中,身高在170≤x<175之間的共有__________人,人數(shù)最多的是__________組(填組別序號(hào));
(3)已知該校共有男生500人,女生480人,請(qǐng)估計(jì)身高在160≤x<170之間的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式.
(2)求當(dāng)x為何值時(shí),y1>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司每天上午9:00-10:00為集中攬件和派件時(shí)段,甲倉庫用來攬收快件,乙倉庫用來派發(fā)快件,該時(shí)段內(nèi)甲、乙兩倉庫的快件數(shù)量y(件)與時(shí)間x(分)之間的函數(shù)圖象如圖所示,那么當(dāng)兩倉庫快遞件數(shù)相同時(shí),此刻的時(shí)間為__________;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com