【題目】如圖,已知二次函數(shù)L1:y=ax2﹣2ax+a+3(a>0)和二次函數(shù)L2:y=﹣a(x+1)2+1
(a>0)圖象的頂點分別為M,N,與y軸分別交于點E,F.
(1)函數(shù)y=ax2﹣2ax+a+3(a>0)的最小值為______,當二次函數(shù)L1,L2的y值同時隨著x的增大而減小時,x的取值范圍是______.
(2)當EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點為A(m,0),當△AMN為等腰三角形時,求方程﹣a(x+1)2+1=0的解.
【答案】(1)3;﹣1≤x≤1;(2)a=﹣1,四邊形ENFM是矩形;(3)x1=﹣1,x2=﹣1﹣或x1=2,x2=﹣4.
【解析】試題分析:(1)把二次函數(shù)L1:y=ax2﹣2ax+a+3化成頂點式,即可求得最小值,分別求得二次函數(shù)L1,L2的y值隨著x的增大而減小的x的取值,從而求得二次函數(shù)L1,L2的y值同時隨著x的增大而減小時,x的取值范圍;
(2)先求得E、F點的坐標,作MG⊥y軸于G,則MG=1,作NH⊥y軸于H,則NH=1,從而求得MG=NH=1,然后證得△EMG≌△FNH,∠MEF=∠NFE,EM=NF,進而證得EM∥NF,從而得出四邊形ENFM是平行四邊形;
(3)作MN的垂直平分線,交MN于D,交x軸于A,先求得D的坐標,繼而求得MN的解析式,進而就可求得直線AD的解析式,令y=0,求得A的坐標,根據(jù)對稱軸從而求得另一個交點的坐標,就可求得方程﹣a(x+1)2+1=0的解.
試題解析:(1)∵二次函數(shù)L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3,
∴頂點M坐標為(1,3),∵a>0,∴函數(shù)y=ax2﹣2ax+a+3(a>0)的最小值為3,
∵二次函數(shù)L1的對稱軸為x=1,當x<1時,y隨x的增大而減;
二次函數(shù)L2:y=﹣a(x+1)2+1的對稱軸為x=﹣1,當x>﹣1時,y隨x的增大而減小;
∴當二次函數(shù)L1,L2的y值同時隨著x的增大而減小時,x的取值范圍是﹣1≤x≤1;
故答案為:3,﹣1≤x≤1.
(2)由二次函數(shù)L1:y=ax2﹣2ax+a+3可知E(0,a+3),
由二次函數(shù)L2:y=﹣a(x+1)2+1=﹣a2x﹣2ax﹣a+1可知F(0,﹣a+1),
∵M(1,3),N(﹣1,1),
∴EF=MN==2,
∴a+3﹣(﹣a+1)=2,
∴a=﹣1,
作MG⊥y軸于G,則MG=1,作NH⊥y軸于H,則NH=1,
∴MG=NH=1,
∵EG=a+3﹣3=a,FH=1﹣(﹣a+1)=a,
∴EG=FH,
在△EMG和△FNH中,
,
∴△EMG≌△FNH(SAS),
∴∠MEF=∠NFE,EM=NF,
∴EM∥NF,
∴四邊形ENFM是平行四邊形;
∵EF=MN,
∴四邊形ENFM是矩形;
(3)由△AMN為等腰三角形,可分為如下三種情況:
①如圖2,當MN=NA=2時,過點N作ND⊥x軸,垂足為點D,則有ND=1,DA=m﹣(﹣1)=m+1,
在Rt△NDA中,NA2=DA2+ND2,即(2)2=(m+1)2+12,
∴m1=﹣1,m2=﹣﹣1(不合題意,舍去),
∴A(﹣1,0).
由拋物線y=﹣a(x+1)2+1(a>0)的對稱軸為x=﹣1,
∴它與x軸的另一個交點坐標為(﹣1﹣,0).
∴方程﹣a(x+1)2+1=0的解為x1=﹣1,x2=﹣1﹣.
②如圖3,當MA=NA時,過點M作MG⊥x軸,垂足為G,則有OG=1,MG=3,GA=|m﹣1|,
∴在Rt△MGA中,MA2=MG2+GA2,即MA2=32+(m﹣1)2,
又∵NA2=(m+1)2+12,
∴(m+1)2+12=32+(m﹣1)2,m=2,
∴A(2,0),
則拋物線y=﹣a(x+1)2+1(a>0)的左交點坐標為(﹣4,0),
∴方程﹣a(x+1)2+1=0的解為x1=2,x2=﹣4.
③當MN=MA時,32+(m﹣1)2=(2)2,
∴m無實數(shù)解,舍去.
綜上所述,當△AMN為等腰三角形時,方程﹣a(x+1)2=0的解為
x1=﹣1,x2=﹣1﹣或x1=2,x2=﹣4.
科目:初中數(shù)學 來源: 題型:
【題目】某市號召居民節(jié)約用水,為了解居民用水情況,隨機抽查了20戶家庭某月的用水量,結果如表,則這20戶家庭這個月的平均用水量是噸.
用水量(噸) | 4 | 5 | 6 | 8 |
戶數(shù) | 3 | 8 | 4 | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若y軸上的點P到x軸的距離為3,則點P的坐標是( )
A. (3,0) B. (0,3) C. (3,0)或(-3,0) D. (0,3)或(0,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com