【題目】如圖,已知BD,CD分別是 ∠ABC和∠ACE的平分線,連接AD,∠DAC=46°, ∠BDC _________

【答案】44°

【解析】如圖,過點(diǎn)DDF⊥BA,交BA的延長線于點(diǎn)F過點(diǎn)DDH⊥AC于點(diǎn)H,過點(diǎn)DDG⊥BA,交BC的延長線于點(diǎn)G

∵BD,CD分別是 ∠ABC∠ACE的平分線,

∴DF=DG=DH,

∵DH⊥AC,DF⊥BA

∴AD平分∠CAF,

∴∠DAC=∠FAD=46°,

∴∠BAC=180°-46°-46°=88°

∵BD,CD分別是 ∠ABC∠ACE的平分線,

∴∠DCE= ,DBC= ,

∵∠DCE=∠BDC+∠DBC,∠ACE=

∴∠BDC+DBC=BAC+ABC),

∴∠BDC=BAC= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)E∠AOB的平分線上一點(diǎn),ED⊥OA,EC⊥OB,垂足分別為C、D.

求證:(1)OC=OD;

(2)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中:
①了解一批袋裝食品是否含有防腐劑;
②了解某班學(xué)生“50 米跑”的成績;
③了解江蘇衛(wèi)視“非誠勿擾”節(jié)目的收視率;
④了解一批燈泡的使用壽命.
適合用普查(全面調(diào)查)方式的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列所給出坐標(biāo)的點(diǎn)中,在第二象限的點(diǎn)是( 。

A. 2,3B. -2,-3C. ( -2 , 3 )D. ( 2 , -3 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)L1y=ax2﹣2ax+a+3a0)和二次函數(shù)L2y=﹣ax+12+1

a0)圖象的頂點(diǎn)分別為MN,與y軸分別交于點(diǎn)E,F

1)函數(shù)y=ax2﹣2ax+a+3a0)的最小值為______,當(dāng)二次函數(shù)L1,L2y值同時隨著x的增大而減小時,x的取值范圍是______

2)當(dāng)EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).

3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為Am,0),當(dāng)△AMN為等腰三角形時,求方程﹣ax+12+1=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADBC,ABC=90o,AB=BC,點(diǎn)E是AB上的點(diǎn),ECD=45o,連接ED,過D作DFBC于F.

(1)若BEC=75o,F(xiàn)C=4,求梯形ABCD的周長(4分)

(2)求證:ED=BE+FC.6分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸、軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等腰RtABC,BAC=90°.求過B、C兩點(diǎn)直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點(diǎn)A(1,4).

(1)求這個一次函數(shù)的解析式;

(2)試判斷點(diǎn)B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有三張分別標(biāo)有1、2、3數(shù)字的卡片(卡片除數(shù)字外完全相同).

(1)從袋中任意抽取一張卡片,則抽出的是偶數(shù)的概率為  ;

(2)從袋中任意抽取二張卡片,求被抽取的兩張卡片構(gòu)成兩位數(shù)是奇數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案