
解:(1)連接O′P,則∠PO′F=n°;
∵O′P=O′F,
∴∠O′FP=∠a,
∴n°+2∠α=180°,即∠α=90°-

n°;
(2)連接M′P、PC.
∵M′F是半圓O′的直徑,
∴M′P⊥PF;
又∵FC⊥PF,
∴FC∥M′P,
若PC∥M′F,
∴四邊形M′PCF是平行四邊形,∠α=30°,
∴PC=M′F=2FC,∠α=∠CPF=30°;
代入(1)中關系式得:
30°=90°-

n°,
即n°=120°;
(3)以點F為圓心,F(xiàn)E的長為半徑畫弧ED;
∵GM′⊥M′F于點M′,
∴GH是弧ED的切線,
同理GE、HD也都是弧ED的切線,
∴GE=GM′,HM′=HD;
設GE=x,則AG=2-x,
設DH=y,則HM′=y,AH=2-y;
在Rt△AGH中,AG
2+AH
2=GH
2,得:
(2-x)
2+(2-y)
2=(x+y)
2即:4-4x+x
2+4-4y+y
2=x
2+2xy+y
2∴y=

∴S=

AG•AH=

(2-x)(2-y)=

(0<x<2)
即:S與x函數(shù)關系式為S=

(0<x<2).
分析:(1)連接O′P,則∠PO′F=n°,因為O′P=O′F,所以∠O′FP=∠a,由三角形內角和定理得出結論;
(2)連接M′P,因為M′F是半圓O′的直徑,所以M′P⊥PF,又因為FC⊥PF,所以FC∥M′P,若PC∥M′F,四邊形M′PCF是平行四邊形,故PC=M′F=2FC,∠α=∠CPF=30°,代入(1)中關系式即可;
(3)以點F為圓心,F(xiàn)E的長為半徑畫弧ED,由于GM′⊥M′F于點M′,則GH是弧ED的切線.同理GE、HD也都是弧ED的切線,GE=GM′,HM′=HD.設GE=x,則AG=2-x,再設DH=y,則HM′=y,AH=2-y;在Rt△AGH中,由勾股定理得y與x的關系式,再代入三角形的面積公式即可.
點評:本題綜合考查了圓周角的判定定理,切線的性質及判定定理,勾股定理的運用,是一道綜合性較好的題目.