【題目】如圖,在中,,DBC的中點.

小明對圖進(jìn)行了如下探究:在線段AD上任取一點P,連接PB.將線段PB繞點P按逆時針方向旋轉(zhuǎn),點B的對應(yīng)點是點E,連接BE,得到.小明發(fā)現(xiàn),隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請你幫助小明繼續(xù)探究,并解答下列問題:

1)當(dāng)點E在直線AD上時,如圖所示.

;連接CE,直線CE與直線AB的位置關(guān)系是

2)請在圖中畫出,使點E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.

3)當(dāng)點P在線段AD上運動時,求AE的最小值.

【答案】150;(2;(3AE的最小值

【解析】

1)①利用等腰三角形的性質(zhì)即可解決問題.②證明,,推出即可.

2)如圖③中,以P為圓心,PB為半徑作⊙P.利用圓周角定理證明即可解決問題.

3)因為點E在射線CE上運動,點P在線段AD上運動,所以當(dāng)點P運動到與點A重合時,AE的值最小,此時AE的最小值

1)①如圖②中,

,,

②結(jié)論:

理由:∵,

,

,

,

AE垂直平分線段BC,

,

,

,,

,

,

故答案為50,

2)如圖③中,以P為圓心,PB為半徑作⊙P

AD垂直平分線段BC,

,

,

3)如圖④中,作H

∵點E在射線CE上運動,點P在線段AD上運動,

∴當(dāng)點P運動到與點A重合時,AE的值最小,此時AE的最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個數(shù)的平方等于,記為,這個數(shù)叫做虛數(shù)單位。那么和我們所學(xué)的實數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為為實數(shù)),叫這個復(fù)數(shù)的實部, 叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似。

例如計算:

1填空: =_________, =____________.

2填空:①_________; _________ 。

3若兩個復(fù)數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:已知, ,( 為實數(shù)),求的值。

4)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成的形式。

5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點E在邊BC上,EFAEAD于點F,若AB2BC7,BE5,則FD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC中,∠ACB90°.D為射線BC上一動點.連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°至點E,連接AE、DE.點MN分別是AB、DE的中點,連接MN

(1)如圖1,點D在線段BC上.

猜想MNAB的位置關(guān)系,并證明你的猜想;

連接EB,猜想BEBC的位置關(guān)系;

(2)在圖2中,若點D在線段BC的延長線上,BEBC的位置關(guān)系是否改變?請你補全圖形后,證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)x0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點DE.若四邊形ODBE的面積為6,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點,和過點的切線互相垂直,垂足為,于點

1)求證:平分

2)連接,若,,求出的直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是圓O直徑CA延長線上的一點,PB切圓O于點B,點D是圓上的一點,連接ABAD,BD,CDPB=BC

1)求證:OP=2OC;

2)若OC=5,sinDCA=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線ykx+bk,b為常數(shù))分別與x軸、y軸交于點A(﹣4,0),B0,3),拋物線y=﹣x2+4x+1y軸交于點C,點E在拋物線y=﹣x2+4x+1的對稱軸上移動,點F在直線AB上移動,CE+EF的最小值是(  )

A.2B.4C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1) (2)2x2+3x—1=0(用配方法解)

(3) (4)(x+1)(x+8)=-2

(5) (6)

查看答案和解析>>

同步練習(xí)冊答案